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PASSIVE INFRARED SURVEILLANCE: NEW METHODS OF ANALYSIS

I. INTRODUCTION

A. Background

This paper describes an analytical model for predicting

the performance of a particular class of infrared sensors,

generically described as Infrared Search and Track (IRST)

devices. An IRST system generally con':.ats of one or more

photodetectors located in the focal plane of a scanning

optical telescope, and a complement of signal processing

electronics to process the detected photocurrents. The

signal processors' task is to determine whether or not an

object of a particular type (a "target") is anywhere in the

sensors' field of view, while keeping the frequency of false

target reports (i.e., the "False Alarm Rate, " FAR) to an

acceptably low level,

The IRST is a nonimaging device, as contrasted with

Forward Looking Infrared (FLIR) imaging systems. (l,)

The search and track device may be required to keep a full

hemisphere (2r steradians) under constant observation, have

a resolution of one milliradian or less, and operate without

human assistance in a fully autonomous mode for weeks at a

time. The challenge this presents to the system designer

is magnified still further by the abundant opportunities

for target/background confusion offered by such typical

background scenes as cloudy skies and cities.

Manuwlpt submitted July 5, 1979.
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Previous attempts to model background effects on IRST

system performance have focused on the Wiener spectrum

approach, 3 8 )a frequency domain technique originally

developed for calculating the noise variance in communication

circuits. Unfortunately, unlike the noise processes typically

assumed in statistical communication theory,9) the IRST

photocurrent is apt to be a highly non-stationary random

process, inadequately characterized simply in terms of its

variance. As the sensor scans across a structured background,

the spatially non-uniform scene brightness is mapped into a

photocurrent whose mean, variance, and other statistics,

are all functions of time. The inadequacy of the Wiener

spectrum method under these conditions has been appreciated

for many years.(
1 0

,
1 1

)

The approach taken in this paper brings together and

generalizes some results from the theories of optical

communications ( 1 2 )and stochastic processes. ( 1 3 ) Ln particular,

the formulation for "threshold crossing rates" originall.y

derived by Ric 1 3 )for stationary processes is generalized

in Section III.B to accomodate sucb nonstationary processes

as arise when nonuniform scenes are scanned by an IRST

sensor, A crossing rate formulation similar to that of

Section III.Bhas been previously derived by Cramer and

(14)
Leadbetter, as discussed in Appendix D,

2
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The general crossing rate formalism is particularized

to non-stationary Gaussian statistics in Section III.C,

appropriate to the description of the photocurrents of

present interest [12, 15).

Some asymptotic approximations to the complete crossing

rate integral are developed in Section III.D.

Numerical examples are given in Section V that

compare a number of approximate formulations with the

rigorous formulation developed in Section III,C. An

original analysis or adaptive threshold IRST sensors is

presented in Section VI,

Previous works describing analysis techniques for

IRST systems are restrictod in applicability to uniform

scenes, Moreover, these works generally proscribe a

totally different formulation for the calculation of

FAR than for the calculation of the target detection

probability, PD' 10 )The original contribution. of this

paper is two-fold:

1, An original analysis i.i presented that unifies

the previous work, by showing that the earlier

techniques for calculating FAR aind PD are actually

both derivable as special cases of a more general

formulation, eq. (51).

2. More importantly, an original method f'or calculating

FAR and PD is presented that is inherently applicable

to non-uniform ,.cenes.

:3



B. A Basic Threshold Receiver

In order to provide a frame of reference for the

following discussion it is necessary to describe a simple

IRST receiver structure, and to define the parameters used

to characterize IRST performance.

A basic threshold comparison receiver is shown in

Fig. 1. The current X(t) at the output of the detector is

input to an electrical filter of transfer function H(f),

The output current Y(t) of the electrical filter is compared

with a threshold yo(t). If Y(t) exceeds the threshold, the

presence of a "target" is declared; otherwise, no target

declaration is made.

The probability that the IRST device makes a target

declaration when a target is in fact in the sensors' field of

view is called the Probability of Detoction (PD). The rate

at which false target declarations occur is termed the "False

Alarm Rate (FAR)."

One may correctly infer from the statistical nature of

the two principal IRST performance measures (FAR and PD) thaW

the IRST detection problem is inherently statistical.

The means by which the threshold in Fig. 1 is estab-

lished will not be considered until Section VI. For the

purposes of the present discussion , while the poss.ibility of

tirme vartiation is retuned, the threshol d yo (t) is assumed

to be det IrIlnlI :ic. ( a )

(a)Consistent with IL convention of random prooess theory,

stochastic quantities are assigred capital letters, with
sample values designatod by the corresponding lower case
letters. Eg., a sample function of the random prLncess Y(t)
is desinated y(t).

i,1- U-1



Analysis of threshold comparison receivers with

stochastic thresholds Y 0 (t) is also of interest, particularly

when Y 0(t) is derived as a function of the photocurrent X(t).

Th 'adaptive threshold" radar (17 ,18 ) adsonar (19 ) eevr

are of this variety. An IRST adaptive threshold processor

analysis is presented in Section VI.



II. OUTLINE OF RESULTS

A. Objectives

The objective of the following section is to outline a new

method for predicting the expected number of times that the

photocurrent from an infrared sensor will cross a time-varying

threshold, as the sensor scans a non-uniform scene. The method

is based on the development in Section III.B of an expression

for the "threshold crossing rate" ihj(t) of the random current

Y(t) (cf. Fig. 1). The rate i is integrated to derive the

probable number of threshold crossings mj(OT) during a time

interval T
m j(0, T) ft zJ tWdt )

T

where T is the time interval It l' T/2.

The expected number of threshold crossings mj(OT) on the time

interval T may be related to the usual False Alarm

Rate (FAR) and Probability of Detection (PD) statistics typically

used to characterize the performance of IRST devices, as dis-

cussed in Appendix C.

An expression for the threshold crossing rate rhj(t) will be

presented in Section II.C. An approximate asymptotic formulation

for mj is presented in Section II.B. The approximate expression

for mj has sufficient accuracy in many cases and eliminates the

need to perform the integral of eq. (1). The asymptotic result

given here is derived in Section IIID.

It is assumed that the average photocurrent n X(t) of tlie

current X(t) (of. Fig. 1) is a known function of time.

6



As discussed in Appendix A, mx (t) is a function of the

aperture irradiance, the Modulation Transfer Function, and

several other sensor parameters of the system to be

modeled (the "model sensor").

7



B. Asymptotic Formulation for

The basic quantities needed to perform the calculation

for the expected number of threshold crossings mj are

a) The time-varying average value m (t) of the randomx
current X(t) (cf. Fig. 1), and

b) The transfer function H(f) of the post-detector

filtor in Fig. 1.

Equivalently, the Fourier transform of H(f) can be

specified in place of H(f):

h(t)-F{H(f)} (2)

The function h(t) is called the "impulse response" of the

post-detector filter, and F{ } denotes the Fourier transform

of the bracketed quantity.

As discussed in Appendix A, H(f) is presumed to include

the frequency characteristic of the photodetector. Thus,

the photodetector in Fig. 1 is "idealized," in the sense

that it is presumed to have a perfect all-pass electrical

frequency characteristic, the frequency-dependent part of

the detector responsivity having been lumped together with H(f).

As shown in Appendix A, the average value mx (t) of the

random current X(t) in Fig. 1 is derivable in terms of:

a) high spatial resolution radiometric imagery of the

infrared scene, in the optical passband of interest

b) the postulated modulation transfer function (MTF)

of the optical train of the model system

c) the quantum efficiency and physical dimensions of

the focal plane detectors, and

d) the focal plane scan velocity.

8



The basic equation for obtaining m x(t) is eq (A-14).

The asymptotic expression for the expected number of

threshold crossings m can be expressed in terms of the

quantities my ayz, and a each of which can be derived as

a function of mx (t). The definitions ofm a and a7z

are as follows:

my(t) - E{Y(t)} (3a)

m z(t) E{(t)} y (3b)

ay 2 (t) E{[Y(t) - my(t), 2} (4)

az2 (t) , E{[Y(t) - mz(t)]2} (5)

Thus,m y is the mean value of the output Y(t) of the post-

detector filter (cf. Fig. 1) a y is the variance of Y(t),

and a,,2 is the variance of Y,* The

expectation operators in eqs. (3)-(5) denote ensemble

averages over the photon fluctuation noise. It is assumed

throughout the analysis that photon noise is the dominant

noise mechanism; in this case, the detector is said to be

operating in the "background limited performance" (BLIP)

regime.

*In the following analysis a dotted quantity denotes the

time derivative of the corresponding undotted quantity.

Also, E( } denotes the expected value of the bracketed

quantity. 9



As shown in Appendix B, my, ay, and az bear the

following functional relationships to mX(t):

m y(t) -h(t) * mex(t) (6)

Sy2(t) - e h2 (t) M mx(t) (7)

%here h(t) is given by eq. (2), e is the electronic charge

and @ denotes the process of convolution:

a(t) @ b(t) f a( )b(t -')d (9)

The asymptotic formulation for mj requires knowledge

of m , a., and az at a discrete set of times. In order to

illustrate the two types of time points that have special

significance, reference is made to Fig. 2. Fig. 2a is an

illustrative example showing the mean value m x(t) of the

random current X(t), as a function of time. The corresponding

m (t), as obtained from eq. (6), might appear as in Fig. 2b.

As shown in Fig. 2b, the threshold function y0 is taken as

a constant in order to simplify the discussion of this

section; generalization of

10



the present results to time-varying thresholds is performed

in succeeding sections.

With reference to Fig. 2b, times tI and t 2 are of

special significance in performing the calculation for

m (O,T).

At time t2 the mean current my crosses the threshold

YO with a positive slope.

As shown in Section III.D., the crossing counter

mj is incremented by unity at time t2. It may be seen

that the following equations are satisfied at time t2

m y(t 2 ) = Yo

(12)

Sy(t2 ) > 0

When there are no solutions to eq. (12) during the

time interval of interest, the value of m is generally

dominated by contributions to the integral in eq. (1) that

occur near local maxima in m (t), such as the maximum at

time t1 in Fig. 2b. The asymptotic expression for the incre-

ment in m associated with the local maximum of my at ti

can be written as:

m (tlf j(tl 1 tI1 (13)

11%
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where M' (t1 ) is the threshold crossing rate at time tj, and

6ti is the effective time interval during which my (t) remains

at its closest proximity to the threshold y0 . The time T in

eq (13) is relatively unimportant; thechoice r>36t I is

generally adequate to capture the principal contribution

to mj that occurs in the neighborhood of t1 '

A reasonable approximation to hih(tl) valid when the

time fluctuations in mrx(t) and my (t) are slow compared to a

characteristic fluctuation time for h(t) is given by:

1- rZ(t)1 12
Ai(t 1) 1 W- Lay(t1)' exp u"(tl)/21 (14)

%bere Oy(tl) and oz(tl) are obtained from eqs (7) and (8),

evaluated at time t1 , and

yo- V(t)
u~)-- t) )-(15)t ay II

Eq. (14) is Rice's original equation for the mean threshold

crossing rate of a stationary Gaussian noise.

The effective proximity time 6tl in eq (13) is given by

2 p 1 (16)
6tl I -tj) -i( t 1,

where IXt1 ) is the second derivative of 19t) with respect to

time, evaluated at t t 1 .

. 12



C. The Exact Expression for 1J

Eq (13), while simple to evaluate, is not always an

accurate approximation for mj. As borne out in the numerical

examples of Section V., eq. (13) becomes progressively less

accurate as:

a) the target/background contrast decreases, and

b) the width of the peak at t, (cf. Fig. 2a) decreases.

The implication of a) and b) is that eq. (13) is unsuitable

for analyzing IRST performance in the regime where the

clutter discrimination problem is likely to be most serious.

The objective of this section is to present the complete

expression, eq. (17), for the mean crossing rate tj

derived in Section III. C. The exact expression for nt

is not subject to limitations a) and b) above. In

addition, the derivation leading to eq. (1.7) is used to guide

the derivation in Section VI of a rigorous formulation

for adaptive threshold processors.

The exact expression for the mean crossing rate

derived in Section III.C., appropriate for non-stationary

Gaussian random processes, is

1h (tlyo o) (- (l-r 2 ) 4(u) {O(p) + P1 O(P)} (17)

13



*here a (t), a (t), and u(t) are given by equations (7),
y

(8), and (15), respectively. The functions $(.) and 0(.)

are the Gaussian density function and its integral,

respectively: _ir(x) - (2r) exp (-x2/2) (18)

O(x) O 0(z) dz (19)

The quantitiew p and p1 in eq (17) are defined by:

2C( (M -120
p- [(o r ) ( + + rucz - w (Po)) =  (20)

, V'o >0

with my given by eq (6), and 4(,) defined as the unit

step function:

(0 x<0

P(x) - x>O (21)

Eq (17) is applicable even for time-varying thresholds yo(t),

as may be inferred by noting the presence of (t) in eq. (20).

The reason for including yo(t) and ko(t) as arguments

of rhi in eq. (17) is explained in Section II.E.

The only still-undefined quantity in eqs. (17) and (20) is

r(t), defined now as:

r(t) = C (t) / (a a) (22)yz y

where Cyz is the cross covariance function of Y(t) and Y(t)Iyz

(cf. eqs (3)-(5)):
Cyz --E Y(t) my(t)] (Y'(t) mz(t)3 (23)

14



As shown in Appendix B,

Cy(t) ay(t) a (t) (24)yz y y

Thus, from eqs (22) and (24)

r(t) a (y a Z) (25)

It may be noted that eq. (17) was derived subject to

the assumption that the photocurrent Y(t) (cf. Fig. 1) is

a non-stationary Gaussian process, The justification for

this assumption and the constraints it imposes on the

validity of eq. (I) are discussed in Appendix F.

For the special case of uniform scenes and stationary

thresholds, it follows from eqs, (6) and (7) that

m z - y " ko 0 (26)

From eqs. (20), (25), and (26)

r p  -p = 0 (27)

From (17) and (27)

ij(t) - (CZ/O ) (2Tr) (uj (28)

which is identical to eq. (14). Thus, eq. (17) reduces

correctly to Rice's original equation (14), appropriate

to the case of stationary Gaussian noise.

15



Eq. (17) appears almost identical1 to an equation

derived by Cramer and Leadbetter. (14) The relationship

between eq. (317) and the corresponding equation in

Ref.C142 is discussed in Appendix D.

16



D. The Character of the Results

The character of the results obtained with eq. (17)

is illustrated with the aid of Figs. 2-5. Once again, the

fact that the process Y(t) (cf. Fig. 1) has a time-varying

mean my (t) qualifies Y(t) generically as a "non-stationary"

process. Also, while the theory developed in this paper is

general enough to accomodate both time-varying and stochastic

threshold functions, the present example is simplified by

the assumption of a constant threshold y0 (as depicted in

Fig. 2b).

Figures 3 and 4 depict, respectively, the crossing rate

rhJ and expected number of threshold crossings mj corresponding

to the mean current my (t) and constant threshold y of

Fig. 2b. The following general obuervations are made with

respect to figures 2-4.

1. As seen in Fig, 3, the function dhj(t) is appreciably

non-zero over only a very small fraction of the total

time interval. The pulse-like waveforms in Fig. 3

are much narrower than the corresponding peaks in Fig. 2.

2. If solutions exist to the equation

mny(t3) - Yo (29)

subject to the constraint that

th(t)>O , at t M t s  (30)

than the character of mJ is determined almost entirely

by the behavior of rh j in the near-neighborhood of the

times t .

*By convention, dotted quantities denote time derivatives
of the corresponding undotted quantities.

17



For each solution of equation (29) that satisfies

constraint (30), i.e., for each positive slope

threshold crossing by the mean current m y(t), the

expected number of crossings m. is incremented by

unity. Time t2 in figures 2-4 is an example of

this effect.

3. If m (t) lies below yo on the interval JtJ(T/2,
y0

i.e., if no solutions exist to eq. (29), then the

character of mj is determined almost entirely by

the behavior of nhj in the near-neighborhood of the

local maxima of my. Time t in Figures 2-4

illustrates this effect,

4. The precise form of m y(t) is typically unimportant.

For example, the m (t) of Fig. 5 might yield effectively
y

the same m j as the m y(t) of Fig, 2, subject only to the
constraints that the peak value and curvature of

m(t) at time tI and the values of ti, t 2 , and yo are

the same in figures 2 and 5.

18



It is asswned throughout much of the analysis that the

comparator device in Fig. 1 recognizes only those

threshold crossings for which the following two

inequalities are observed:

(t) > (31)

and

> 0 (32)

This assumption on the nature of the comparator device

has been incorporated into the analysis in such a way

that the analytical expression for fJ is insensitive

to dowiicrogsings, such as that at time t 3 in Fig. 2.

In fact, similar formulations for the crossing rate

may be developed subject to different assumptions than

(31) and (32), e.g., that the comparator device is sen-

sitive only to downcrossings, or both upcrossings and

downcrossings. In general, it might be desirable to

incorporate both upcrossing and downcrossing sensitive

detectors in a single IRST receiver, in order to develop

an estimator of object size,

It should be recognized that a hardware implementation

of the crossing detectors analyzed in this paper must

first estimate quantities y(t) and (t) before tests

(31) and (32) can be performed.

19



E. Adaptive Threshold Processors

The results described thus far pertain to calculations

of the crossing rate performance of processors configured as

in Fig. 1, having time-variable, deterministic, threshold

functions y 0(t). However, as discussed in Section VI and

Appendix E, potential performance advantages accrue to the

use of threshold-establishing circuitry that adapts the value

of the threshold to the prevailing background conditions.

These "adaptive threshold" processors, such as that shown in

Fig. 20, give rise to threshold functions that are not only

time-varying, but are also inherently stochastic,

By choosing a suitably large value for the delay time

Td in Fig. 20, the filtered current process Y(t) and the

threshold process Y0(t) are rendered statistically independent.

As shown in Section VI.B,, it follows that:

-j(t) , Ey (ib(tlyoko)} (205)

with trh(tIYo o) given by eq. (17). The expectation operator

Eyo ° in eq. (205) is defined by:

y .} =I f d;dn f o( , ) (.} (207)
0O0 0 0

where fyo is the joint density function of the threshold

process Y and it's time derivative o
0 0

20



Happily, the crossing rate expression for time-varying

deterministic thresholds, eq. (17), is found to be also

applicable to the stochastic threshold-crossing rate, eq. (205).

Eq. (205) is further developed in Section VI.C, and

the following approximate result is obtained:

rh (t) rhi(t I mn ,m) [1 -(Y)29 ~ 2 (225)

where a 2 and a are calculated from eqs. (7) and (8),
y y

respectively. Expressions for m~ a and a are obtained

by straightforward analogy to eqs. (6)-(8):

m Y (t) = K h 0 (t-T d)@M~)(189)

cr2 (t) =eKh 2 (t-T) ~t (190)

yo!

Y. 0t d) @K 2 (t)

[.() K t.T d)] @~t (191)
YO

The g-Un constant K, time delay Td and impulse respons~e h (t),
do 0

in eqs. (189)-(191) are design parameters of the adaptive

thresbold scheme shown in Fig. 20. Expressions for the terms

6and E2 in eq. (225) appear as eqs. (226) and (227) in

Section VI.C.

21
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As discussed in Section VI.D., the threshold variance

factors ci 2 and a2 in eq. (225) represent a "False Alarm
Yo Yo

Penalty" that causes the false alarm performance of

adaptive threshold schemes to be inherently inferior to

fixed threshold schemes, against uniform background scenes.

It is also noted that:

a) The analysis of Section VI is applicable to a

considerable variety of adaptive threshold processors,

including the structures depicted in Figs. 22-24.

b) A list of important design parameter trade-off

issues is identified at the end of Section VI.D. The

only important obstacle to performing these analyses

is the lack of high spatial rosolution, radiometric,

infrared background imagery.

22

22

,-- - - - -



III. ANALYSIS

A. Introduction

The objective of section III.B. is to derive an

expression for the expected value of the number of times

a nonstationary noise Y(t) crosses a nonstationary stochastic

threshold Yo(t). The main result of section III.B., eq. (42),

is not used in its complete generality until the adaptive

threshold processer analysis of Section VI, Eq. (42) is

particularized at the end of Section III.B. to the case of

deterministic, time-varying thresholds y(t).
0

The crossing rate equation that results, eq. (48),

requires knowledge of the joint density function fy (Y,9)

of the current Y(t) and its time derivative Y(t).

As discussed in Section III.C. the current Y(t) is a

non-stationary.Gaussian process. It follows that Y(t) and

Y(t) are jointly Gaussian processes. The joint density

fy can then be expressed in terms of five characteristic

statistics.

The explicit expression for the Jointly Gaussian fY

is then u~Ed with the general crossing rate expression (48)

derived in Section III.B. to derive an explicit expression

for the crossing rate, eq. (70). The expressions for the

five important current statistics given in Section III.C, are

derived in Appendix B. The complete expression for the
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expected number of crossings, eq. (72), generally requires

the numerical integration of a somewhat complicated

integrand. Section III.D. is devoted to deriving some

approximations to eq. (72) that don't require numerical

integration, and that have greater intuitive appeal.

2

-!

24



B. A Basic Equation for Curve Crossing Rates

The first objective of this section is to derive eq.

(39) for the average zero-crossing rate of a random process

G(t).

The process G(t) is not required to be either stationary

or Gaussian. Fig. 6 depicts a sample function g(t) of the

process G(t). It is noted that g(t) has a zero-crossing at

time t o:

g(t o ) - 0 (33)

It follows from (33) and the well-known properties of the

Dirac delta-function, 6(.), that

It+

2 0o+

1- f 6(g) dg(- I [g(t)] 1(t)l dt (34)-E. to'A

where cl, 72 , and A are defined in Fig. 6.

It follows from (34) that the total number of zero crossings

of the sample function g(t) on the time interval Itl < T/2

is given by:

J - I S(g) lik(t)ldt (35)
T 0

In writing (35) it is assumed that g(t) does not have a zero-

crossing either at t - + T/2. Defining mj(O,T) as the

expected value of J on the time interval T
0
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M (O,T) - E{J} (36)

and operating on eq. (35) with the expectation operator

E{.}, one obtains

mj(OT) - I dt E{6(g)I (t)j} E J' zh(t)dt (37)
TO 0

From (37)

rlh3(t) - Ef 6(g) I IQ fd fdg f r 4g, ) (a(g) 1j (38)

%Maere f (g, ) is the Joint probability density function of

the process G and its time derivative 6.

The first basic result of this section is the following

expression for the zero-crossing rate rb:
1h'(t) - ) 1fGft (0,1k) d& (39)

Eq. (39) is well-known; however, most references to

(39) appear to impose a stationarity requirement on G that

is not actually necessary. The applicability of (39) to

nonstationary processes appears to have first been recognized

(14)
by Cramer and Leadbetter 1

The domain of integration in eq. (39) is a matter of

some interest. If one wishes to calculate only the expected

number of positive slope zero-crossings, i.e., the expected

number of times that both

G(to) - 0 (40)

and

6(t ) > 0 (41)
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are both satisfied on the interval Jt < T/3, the lower and

upper limits of integration in (39) should be chosen as 0 and

00, respectively. The resulting expression for m(,)

m i(0,T) - I dt (I dt IgIf Go(O 9)} (42)

does not include zero-crossings of the type depicted in

Fig. 6, for which g < 0. Apparently, ihi is sensitive only

to the "right type&' of zero crossing, as defined by the

limits of integration in eq. (39).

The process G(t) is now assumed to be formed as the

difference of two stochastic processes Y(t) .and YOMt:

G(t) =_Y(t) - Y O(t) (43)

where Y (t) is referred to as the "threshold process".
0

Without making any assumptions with respect to the statistics

of Y(t) and Y 0 (t) (e.g., each process may be both non-

stationary and non-Gaussian) it follows from (43) that:

fG*(O.9) f fd~dn fyk o (';,g + n, ,n) (44)
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The proof of (44) is straight-forward (cf. ref. C2J , p.131).

Eqs. (42) and (44) are the basis of the adaptive threshold

processer analysis of Section VI. For the present, it

suffices to specialize (44) to the case of non-random

thresholds, for which the fourth-order Joint density fytyok

becomes

fy~yoto (C& + 11';'n) - fy (C. + M) 6(yo-) 6(-n) (44a)

From (44a) and (44)

fad(Og) a f y(yo, + PO) (45)

From (39) and (45)

Ibi(t) - iI f y(yo + ko )dg (46)

Changing variables:

Z = a + ko (47)

(46)may be written as

Itj(th ) = !z-kolfy (yo ,z)dz (48)

The quantity zij , previously interpreted as the zero-crossing

rate of the process G (cf. eq. (39)), is now interpreted as

the threshold crossing rate of the process Y(t).

28



The domain of integration of eq. (48) is definr'd by

assuming that the hardware implementation of the threshold

counter is sensitive only to those crossings for which the

following two inequalities are satisfied simultaneously:

P(t) > to(t) (49)

and

(t) > 0 (50)

For the example of Fig. 7 this particular type of detector

would increment its "crossing counter" at time t1 , but, by

design, would fail to indicate threshold crossings at times

t2, t3, and t4 .

It follows from eqs. (48) - (50) that

iti(t) - T(o) - l(9o) 7() (51)

Where i(,) is given by eq. (21), and

x
1(x) I (z- o )  f y (yoZ)dz (52)

0

The crossing rate tj could just as well have been

formulated subject 'to different constraints than (49) and

(50). For example, the hardware implementation of the

threshold counter may be sensitive to all crossings for which

1(t) > 0

regardless of the relative magnitudes of &(t) and 3 0(t).
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In this case eq. (48) is still subject to the constraint

of eq. (50), but the constraint of eq. (49) is no longer

in force. It may then be shown that the following

expression obtains, instead of eq. (51):

, ~t I- -u9 o  (k0) (53)

with 1(.) given by (52).

When k < O, satisfaction of (50) assures satisfaction

of (49). One then expects fh and ih to be equal. Inspec-

tion of eqs. (51) and (53) shows that this is indeed the case:

r (t) - thi(t) - 1(-) 1 o (t) < 0

However, when ko > 0 condition (49) is more restrictive

than (50). One then expects j to be greater than t J,

From (51) and (53):

yjt) M lb (t) - I(Uo )  k, (t) > 0

Since 1(ko) is inherently negative (cf. (52)), it follows

that >j > rhi, as expected, when k0 > 0.

With respect to Fig. 7, it can be shown that the integral

m of eq. (53) is incremented by unity both at time t

and t2. By comparison, mi is incremonted by unity only at

time t1 ; mi does not "count" the crossing time t2 , for

which condition (49) is violated. Neither mj nor inJ registers
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a crossing at times t3 and t4 in Fig. 7, since condition

(50) is violated at times t3 and t 4'

Plots of m(t) and m(t) corresponding to Fig. 7 are

depicted in Figs. 8a and 8b, respectively.

The analysis that follows in Sections III - V is

based on development of eq. (51) rather than eq. (53),

i.e., it is assumed that the signal processer hardware

being modelled requires the satisfaction of both (49) and

(50) before it will register a threshold crossing.

I
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C. NON-STATIONARY GAUSSIAN PROCESSES

Further development of eq. (48) for the crossing

rate dj is contingent on obtaining a suitable expression

for the joint density fY,. The objectives of this section

are:

1) to evaluate eq. (48) for the particular case of

a bivariate Gaussian density, eq. (65), and

2) to iitroduce the expressions derived in Appendix B

for the five basic statistics that appear as

parameters in eq. (55).

The justification for assuming a Gaussian distribution

for fy (and hence for f and f y. as well) Is given in

Appendix F.

The approximation:

(y) y

has been considered by Gilbert and Pollack,(2 2 )where (

is the Gaussian distribution function, eq. (65), m and

a. are defined by eqs. (56) and (58), and F (y) is the

distribution function of the process Y(t):

F)- Y) _1y  (y)dy
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A summary of Gilbert and Pollacks' results is given in

Ref, (15).

The problem addressed in Appendix F is different,

and, much simpler, than the problem of Ref. (22). It is

shown in Appendix F that the relative error in th is

approximately equal to the relative error c in the density

function of Y(t):

f y(y) y ( +)

where €(.) is the Gaussian density function, eq, (64).

The Edgeworth series expansion (1 3) of fy(y) provides a

simple and easily evaluated expression for the relative

error . Sample calculations described in Appendix F

show that c is negligibly small for typical system and

background parameter values.

Based on the analysis of Appendix F, the Joint density

fy Yis now assumed to have the following bivariate normal

form:

33
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21 P + V2 
-2ruv]

f ~(Y03Z) -{loa(lr) excp 2 ( 2 15)

where:

my EMY (56)

E(YY (57)

2 2 (58)
a y E{(Y-m y)

2 2
E((Y-m ) }(59)z z

ra ra E{(Y-M )(- } C (60)
y z y z y

u =(y 0 -m y )/Ua (61)

* 34



FI

It may be shown from eqs (52) and (55) that

I(x) (1-r2  ( Po ) - (Px ) ] + Plc((PA-,(P,)j} (63)

where cy aZ, r, and u, are given by eqs (58), (59), (60),

and (61), respectively. The functions ¢(,) and 0(.) in

(63) are defined as follows:

(x) R: (2',)- * exp (-x /2) (64)

O,(x) -= (z)dz (65)

The quantities p., Pl, and px in (63) are defined as:

p. C(1-r ) (m + ruaz) (66)

P - r - r2 ) a)-l (m + rua.- o) (67)

1 z -z 0
p1  2) a J-1

- 'z (mz + rua Zx) (68)

From eq. (68), (64), and (65)

1 =,li ((p 0 (69)
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From eqs. (51), (63), and (69):

b (t).- )(1-r2) *(u) (Op) + plo(p)} (70)

where by definition

PIo< o0 (71)
1Pl o >  0

with po and p, given by eqs. (66) and (67).

The expected number of threshold crossings on the time
interval TO , defined by Itj < T/2, is given by:

Oj(O T) - E {J) - ih (t)dt (72)
TJ

a

With rh (t) given by eq. (70). In order to complete the formal

caiculat.onl procedure for m., it is necessary to specify

V. values for the five functions m (t), m (t), t), j (t),y z y
and r(t", defined by eqs. (56) - (60). It is shown in

Appendix B that for background-limited (BLIP) detection,

my(t) - h(t) m X(t) (73)

2(t) a e h2 (t) * M M(t) (74)
y X

* 8 ''.Jt ) m ( t) (75)02(t) . e [tj2Wm M 75

Mz(t) - h y(t) (73a)

r(t) 'U 5y(c)/yZ(t) 36 (76)



whore e is the electronic charge, h(t) is the impulse

response. of the post-detoctor I I tor (of Fig. 1), mIx(t )

is the mean value of the current X( t) (ctf. Fig. 1) and

Q is the convolution operator:

f(t) * g(t) _ f(t-x)g(x)dx (77)

The relationship of nx (t) to the radiance of tho

scene under observation and the OptiLLl parameters of

the IRST sensor is discussed in Appendix A, and oxpressod

quantitatively by eq. (A-14). Eqs. (A-1-1), (70), and

(72)-(76), taken together, represent it prescriptioi ror

calculating the performance of t tlme-variable threshold

IRST sensor again.st a non-uniform scone.

In principal, it romtins only to model, measur., tip

otherwise specify the radiance distributions of typieal

targets and background scenes. Th.is aspect of' the IRST

modeling problem i.s not considered tn this paper.

It may be noted that eq. (70) appears al.inost idetfnttea i

to an equation in Ref. (14). The rat ion.hl ip h botween

ot, (70) and th ie cort'ospond ih1g oqua tion lit 11'. k-1,' ( ) Is

dlscussed tn Appendix 1).
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D. Asymptotic Approximations

1. Introduction

Evaluation of eq. (72) for the mean number of threshold

crossings m generally requires a numerical integration of

rhi, as given by eq. (70). It is now shown that a relatively

simple approximation for m can be developed that eliminates

the need to perform this numerical. integration, and has

greater intuitive appeal than the original formulation.

Some numerical examples comparing the numerical integral of

eq. (70) with the approximate result developed here are

presented in part V of this paper. Eq. (72), with eq. (70)

substituted for tj, is now written as:

mj(OT) - f a(t)e-b(t)dt (78)
TO

where T is the time interval Itl <T/2, and whero

b(t) E u2 (t)/2 (79)

1t(t) 2 (l-r) t(p) + p (p)} (2)-(80)

Experience with the numerical evaluation of eq. (78)

has led to the conclusion that h j is appreciably non-zero

only over very brief intervals of time (of., for example,

Fig. 3). Since the principal contribution to the integral

mj of rhj accrues over those same short intervals (of'. Fig. .1),

eq. (78) may be written as:
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In (O , r ) E m i t n , n  (T

n

where

m(cnt n  ) - I M(t)e -b(t)dt (82)
T n

where Tn is the time interval It-tnI < Tn/2."

The interval Tn is presumed to be large enough for the

integral in eq. (82) to capture the principal contribution

to mj(OT) made by the n t h term in the summation of eq. (81).

Experience with the numerical evaluation of eq. (78)

has also shown that the rapid time variation of dj in the

neighborhood of the discrete times tn is mainly due to the

exponential factor, the function a(t) varying much more, slowly

with 'time. Eq. (82) is thus approximated as:

mj(tn ) n anI n  (83)

where a.n  a(tn), and

In e-b(t)dt (84)n 
.

where T is the time interval It-tnI < T/2

The usual first-order saddle point method is now used

to obtain approximations for In . The saddle points tn are

found by solving for the roots of the equation:
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b(tn ) - u(tn )C(t) 0 (85)

t.q. (85) has two distinctly different types of solutions,

corresponding to solutions of the following two equations:

d(tn ) - 0 (86)

u~tn ) M 0 (87)

Each root of eq. (85) gives rise to a discrete contribu-

tion to the approximate formulation for mj, the form of which

depends on whether the root is a solution to eq. (86) or

eq, (87).

Solutions of eq. (86), such as time tI in Fig. 2b,

will be referred to as "saddle points." Solutions of

eq. (87), such as time t2 in Fig. 2b, will be referred to

as "mean crossing times."

The next objective is the development of approximations

to the integral In of eq. (84).

2. Saddle Points

The function u(t) in eq. (79) is now given a

Taylor expansion about a time t.:

u(t)' Un + Ln ( -t ) 4, il (t-t /n)2 (88)

Assuming that tn is a "saddle point", i.e., a solution of

eq. (86), eq. (88) becomes:

u(t) '  U + U1 (t - t11 /2 (89)
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From eqs. (79) and (89), dropping the fourth-order term:

b(t) u2 /2 + u U~ (t-t ) 2/2 (90)

From eqs. (84), (90), and (79):
E /22

I exp(-b n)-I exp(-un U n~ t 2 )dt (91)

where b a _b(ta).

Making use of the facot that

-~exp (-rrfx 2)dx -1 (92)

and assuming that E in (91) is chosen sufficiontly large,

eq. (91) can be approximated as

I (2w/u n i) exp (-bn) (3

From (83) and (93)

m i(tn T) n [a nexp (-b,)] (2W7/u ii )i (94)

Comparison of eqs. (78) and (72) shows that

With the definition:
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It follows from (94)-(96) that:

Mj(tn , T n )  j(tg) Stn  (97)

From eqs. (81) and (97) |

mj(O,T) nIj(tn) 6tn (98)

It is relatively straightforward to show that:

A(t) = d/dt {(yo-m y)/ay} ) =-az(1-r 2 ) p/ay (99)

Thus, from (86) and (99)

pl(tn) W 0 (100)

From (80) and (100)

a n  z (/,I ,)(1-r 2) O(pn ) (2v) "t  (101)

From (100), (66), (67), and (71)

Pn Po - (1-r2)* az -Yo to < 0 (102)

P1  = 0 ,40 > 0

at t - t .

From (95), (101), and (79)

tbj(tn) ((2Tt) -  (az/7y) (U) {C21r(l-r 2 )1 (pn)} (1.03)
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F.

The desired approximation to m is given by eq.

(98), with Stn and rilj(tfn ) given by eqs. (96) and

(103),respectively.

The first bracketed quantity on the left-hand-side

of eq. (103) is identical to Rice's equation for the

threshold crossing rate of stationary Gaussian noise. The

second bracketed quantity in eq. (103) is always less than

unity. For constant threshold processors (k. - 0) the

second bracketed quantity is equal to (l-r ) , which is

nearly unity whenever the fluctuations in the mean current

in(t) are slow compared to the impulse response h(t) of

the post-detector filter.

For constant threshold processors, the quantity 6tn in

eqs. (96) and (98) can be interpreted as the effective time

interval during which the filtered mean current m y(t) remains

in the neighborhood of its peak.

It should be noted that the approximation (98) may

be incomplete, since the discrete terms in the summation

all correspond to roots of eq. (86). As discussed in the

following section, roots of eq. (87), assuming such roots

exist, each make an additional discrete contribution to m .

3. Mean-Crossing Times

Instead of eq. (86), it is now assumed that eq. (85) is

satisfied because

U(t - (tn) - my(tn)/ y(tn)} - 0 (104)
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The saddle points obtained as solutions of eq. (104) correspond

to times when the mean current m y(t) crosses the threshold

Yo(t). Thus, in the vicinity of t

yn, [Yo(t) - m ]y-( [ (in) it y (in)]  ( t-t n )  (105) (o

From eqs. (105) and (79)

b(t)y(tn)] 2 (t-n y

Evaluating eq. (84) for I., with b(t)now given by (106) rather

than (90), it can be shown that

0y 0
mJ('n," n ) n (lr) (n y n (p ) sgn (thY- o) (107)

Where sgn(.) denotes the sign of the bracketed quantity,

denotes the absolute value of the enclosed quantity, and

-n rz(- T iby <0(108)

The assumption is now made that:

pn 1 (109)
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Subject to assumption (109), it follows from eq. (108)

that

0 (110)
O(pn )

and
-,, P (ry )  ko < 0

n ( y' o) o > 0 (111)

where U(.) denotes the unit step function0o x <0
P(X) W , x > 0 (112)

Eq. (111) can also be written as

(Pn )  I( ) A(fy) y - PO )  (113)

Noting that

1.(rn -(o) sgn (rh - y ) i (rh - o) (114)y 0y -O) 1(hy k0

it follows from eqs. (107), (110), (113), and (114), that

m J(t n,-rn )  [fly(t nl 1 y (t n) - ,o(t n 1 (115)

subject to assumption (109), with pn given by (108).

It follows from eq. (115) that if the mean current

m y(t) crosses the threshold y0 (t) at time tn, then the

crossing count mj will be incremented by unity if the

following two conditions are both satisfied:
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1L) the .liope of m (t) at time t n (i.e., 0t(t n) must

be positive, arnd

2) the slope of m (t must be greater than that of

yO (t) at time t n

--assuming that the slopes of m y(t) and y 0 (t) at

time tnaren't nearly the same, i~e., that m Y(t) and y0(tW

don't run nearly parallel in the neighborhood of their

crossing point t n. (This last assumption is; expressed

quantitatively by inequality (109).)

Thus, the asymptotic result for mean-crossing times

reflects the limitations on the domain of integration in

eq. (48) imposed by inequalities (49) and (50).
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IV. INFINITE CONTRAST POINT TARGETS

A. Introduction

The mean crossing rate formalism developed in

Section III.C requires adherence to the following pre-

scription:

1. The mean current m x(t) must be specified. (It

is shown in Appendix A how m (t) may be calculated

in terms of the radiance distribution of the scene.)

2. The post-detector filter impulse response h(t)

must be specified.

3. Eqs. (73).-(76) must be evaluated for the five
functions m y((t), a t), mz(t), and r(t).

4. The mean crossing rate rhj(t) is obtained from

eq. (70), and integrated over time to obtain the

expected number of crossings.

The difficult calculational problem generally posed

by step 3 above can be circumvented by making the following

choice for m (t):

rt) -x o (t-t 0 ) (116)

Eq. (116) is the limiting case of an infinite contrast

point target, assuming an ideal optical MTF, and point

detectors in the focal plane.
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The final resu.Lt of this section will be an expression

for m (OT) that is formally identical to-the usual expres-

sion '.3r the probability of detection p(16):
D

,, )yo- re, tn)

SD -ly ) (117)

where 0(.) is the Gaussian distribution function, and

t is the time at. which the post-detector filter output

current assumes its peak value.

The application of eq. (117 to PD calculations was
(16)

previously derived subject to the assumption of internal

amplifier-noise..limited operation, for which the filtered

current Y(t) is a stationary -andom process. The surprising

result is now obtained that eq. (117) is also applicable to

PD calculations for BLI? sensors, for which the current Y(t)

is a nonstationary r_ ndom process. The only important dis-

tinction betwee~n the calculational procedures for PD for

amplifier-noise-limited or background-limited operations lies

in the means forobtaining a y(t p). For BLIP sensors, a y(tp) P

is calculated from eq. (146),
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B. Analysis

Eqs. (116) and (73)-(76)lead imediately to the following

equations for the five basic current statistics:

(t = x 0h(t-t 0 ) (118)

(t) 2 = x0e h 2(t-t 0) (119)

a t)- x0e 210

ah (t) x rt 0 )] (120)

r(.) ar (t) a (t) x e h(t-t) 1h(t-t) (122)
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From eqs. (119) and (120):

M t) (x 0o)6) h(t-to)I - (xoe)i h(t-t o ) sgn (t-to  (123)
y

aZ(t) - (xo0e) lh(t-to)I - (xoe)i h(t-t 0 ) sgn [l5(t-to)] (124)

where the function sgn (.) denotes the sign of its argument.

From eqs. (122)-(124):

r(t) - sgn [h(t-t o) h(t-to)] (125)

Thus, from (125):

lr(t)l - 1 (126)

Unity correlation coefficient, eq. (126), invalidates

the bivariate density eq. (55). (Note the factor (I-r2 )& in

eq. (55).) Thus, a new expression for f must be found that

is valid for the cise r a 1, and used to evaluate eq. (52).

It may be shown that eq. (126) implies the following

relationship between Y(t) 2 Z(t) and Y(t):

Z(t) - a(t) Y(t) (127)

where

a(t) t (h(t-to0)/h1(t-to0)1 (128)
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It follows, in turn, that:

ty7(Y,z) - fy(y) 6(z -ay) (129)

Where 6(,) is the Dirac delta function, a is given by

(128), and

fy(y) - Y (U) (130)

O~)F(27r)- exp (-x 2/2) (131)

and

u(t) [= Y0 (t) - m y(tj /a (tM (132)

From eqs. (52) and (129):

I(X) "(m~y 0 - ')f~ Y(Y.) {ip(ay 0 )-Pi(ay 0-X)j (133)

with the unit step function ti() defined by eq. (112).

Assuming a constant threshold processor,

k- 0(1)

it foll.ows from eqs. (51.) and (133) that

1) j (t) I(-~) =ay0 fy (yo) 1('Lyo) (135)
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From eqs. (72), (135), and (130)-(132),

T/2 -1
M i(0,T) - f dt ay 0 11(ay 0 ) a y (U) (136)

t 0

With the following change of variable

q~~~~~~~~~ S SOx0htt) [Xe*htt 17

eq. (136) may be written as

q(T/2)r
mj(O.T) -f I A(t-t ON /h(t-t0 )] sgn [h(t-t0 )] (q)dq (138)

qt0)

It is now assumed that the threshold is positive

YO>0 (139)

and that h~t) has the form shown in Fig. 9.. Eq. (138) then

may be written as:

q( t1)
M i(0,T) I -f (q)dq (140)

From eq. (137)
y0-x 0 h(O) 0

q(t) lrn (x e) h(O ) (141)
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Also, from eq. (137) and Fig. 9:

ry -x I a0 V

qt) xi~x W kIn t

From (140)-( 142)

mn i(0,T) I f (q)dq (143)

q~t")

Defining the Gaussian distribution function '()as

in eq. (65), eq. (143) may be written as:

mj(OT) - 1 - (q(t (144)

with q(t 1 ) given by eq. (142). Eq. (144) is the desired result.

Eq. (144) may be generalized somewhat, by allowing h(t)

to have the form shown in Fig. 10. With the following

definitions:

inymax (J) -x hax (J) ,J ,, .3... (145)

0yt (jU) - (-Xo) 1 hnMIx (J) j - 1, 2.3,. (146)

q(t ) -j 1,2,3... (147)

It follows that

in (0T) - L {1- Fq(tj)] (148)

According to (1,18), m has a discrete contribution frcm each

of the peaks in h(t).
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V. SAMPLE CALCULATIONS

A. A Model Filter and Model Background

In order to calculate the threshold crossing rate rhj, it

is generally necessary to first numerically evaluate

eqs. (73)-(76) for the functions m y(t), 0y (t), Z (t),

M,(t), and r(t), since analytical evaluation of eqs, (73) -

(76) is generally not possible.

In order to obviate the need for numerical evaluation

of (73) - (76), it is assumed in this section that the

impulse response h(t) and mean current mx (t) have the

following forms:

h(t) = (2/t0 ) exp {- (t/t0 ) 2) cos 2rf ot (149)

mx(t) x0 (1 + x1 exp_ L(t/t)2]P (150)

Eq. (149) is a two-parameter family of functions, with

parameters t0 and f0 . Eq. (150) is a three-parameter family,

with parameters xo , x1, and r. Eqs. (149) and (150) are

particularly convenient, as they allow analytical evaluation

of eqs. (73) - (76), and have a large enough number of

parameters to illustrate many of the effects that one would

expect to observe with more general h(t) and mx(t).

Taking the Fourier transform of eq. (149) results in the

following expression for the transfer function H(f):
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11(f) -F~h(t)} (exp[-Tr(f-f ) 2 t2] + exp [-i f +f ",2] (1591)

Representative plots of eqs. (150) and (151) are given in

Figs. (ii) and (12).

It is seen from Fig. 11 that the parameters xo, X1 , and

T of m x(t) correspond respectively to a constant background

brightness level, the object/background peak contrast, and

the size of the non-uniformity. It follows from Fig.12

that the model filter has a bandpass characteristic centered

at the frequency f0 . From eq. (149), the parameter to is

a damping constant for the filter. Thus, while not completely

general, eqs. (149) and (150) permit the exploration of a

considerable variety of possible background/filter

interaction effects.

Assuming that

exp (-4nf 22 ) >> 1 (152)
0 0

it follows from eq. (151) that

max H(f) = 1 (153)
f

The factor (2/to) on the right-hand-side of eq. (149) was

chosen to normalize H(f) to a peak value of unity.

The only major deficiency in eq. (151) as a model filter

characteristic is the inability to control the filters'

low frequency roll-off independently of the center-frequency

parameter f and noise bandwidth parameter to0

The derivations of the analytical expressions that result
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from evaluating eqs. (73)-(76) with the assumed functional

forms for h(t) and m x(t) are available from the author.

Figs. 13-17 are illustrative evaluations of m Y(t),

m ta 2(t), C (t), and a%2(t), assuming the followingZ y yz

choices for the five model background/filter parameters:

X0 134. flhJPS (154)

X 0.5 (155)

- 159. lisec. (156)

f -6.91 kHz (157)

to -225 jisec. (158)

The rationale behind the choice of parameter values (154)-

(158) is discussed in Appendix G.
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B. Crossing Count Calculations

In this section the value obtaiz.ed for mj(OT) by

integrating eq. (70) numerically will be compared with

the value obtained for mj(OT) by three approximate methods.

In every case, it will be assumed that h(t) and mx (t) have

the forms specified by eqs. (149) and (150), and that the

threshold y0 is independent of time.

The first approximation to mj(OT) is given by:

mQs(OT) t (t)dt (159)

where

1QS(t) (2nr) (az/ay) (u) (160)

and T 0is the interval Itj < T/2.

Comparing eq.. (160) and eq. (14), it is seen that eq. (159)

is simply the integral of Rice's original expression for the

crossing rates of stationary processes, transmuted into a

function of time through the use of time-variable expres-

sions for the basic current statistics, my, y and z

It is generally found that the estimate

mQS , mi (161)
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improves monotonically as the parameter T in eq. (150) is

made larger. Eq. (159) defines what will be referred to as

the "quasi-stationary" (Q-S) approximation to the mean

crossing count mi.

The second approximation to m (O.T) that will be

evaluated in this section is the asymptotic approximation

derived in Section III.D:

mA(OT) % bj(t )6ts (162)

The saddle point ts is obtained from eqs. (100) and (67) as

the solution of

m Z(ts ) + r(t S) u(ts ) Oz(t s) - 0 (163)

since it is assumed that ko(t) - 0 in this section in order

to simplify the numerical examples. It has been found that

(163) is effectively equivalent to

m z(t)- 0 (164)

due to the very small value of r(ts) for the examples that

have been worked. It follows from eq. (164) and inspection

of Fig.14 that ts - 0 for the example of eqs. (154) -

(158). The same saddle point condition has also been found

to hold for the other numerical cases discussed in this section,
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t 0 (1.65)

corresponding to the time of closest approach of m (t) to

for the assumed expressions (149) and (150) for h(t) and

m (t). It follows from the above discussion and the analysis
x

of sectionIII.D that the appropriate asymptotic approximation

to m (0,T) is given by

mA(OT) - rhQs(O) 6ts  (166)

where i. is given by eq, (160), and 6ts is given by

eq. (96):

6ts  (27r/VU(0) u(0)} (167)

where

Yo - m Y(o)

u(0) a O (168)

and

U (0) 2du(t)/dt2j (169)

The third and final approximation t in j(OT) is effectively

ai modified version ofcenoud's method(24)for the calculation

of probability of detection:

mps(O,T) 1 -{u(O)} (170)
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where 0(.) is the Gaussian distribution function, as given

by eq. (65).

As will presently be shown, eq. (170) becomes

increasingly accurate as an approximation to in J

mps (OT) % m j(0,T) (171)

as the object contrast x1 is made progressively larger

and the object extent r is made progressively smaller,

This is not at all surprising, in light of the fact that

the mean threshold count for infinite contrast point

targets, eq, (144), is identical to eq, (170). The

quantity mpS will be called the "point source approximation"

to mJy

Fig,18 is a plot of the base ten logarithms of

mj(O,TF), mpS(O,TF), and mnA(OTF), as a function of the

normalized peak threshold level up

u(O) (172)

where u(O) is given by eq, (168), and a,,'suming the

background radiance and filter parameter,".. of eqs. (154)-

(158).6
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As discussed in Appendix G, parameters (1-54)-(158)

correspond to tile following more basic parameter choices:

% - . mrad (object angular subtenste)0

T,1 mrad (instantaneous field-of-view)T

TF - I sec ( frame time) (173)

H(O) - 10 "  (transfer function zero ordinate)

0.6 (quantum efficiency)
( 174 )

\- .1.wim (optical wavelength)

Aap 500 em (aperture area)
and

LB - 0s14 mw cm sr" (background radiance) (175)

Specifying , * C' qualit'ies the object described by

eq. (150) as "target-like" in character (f . Appendix G).

It is seen from Fig. 18 that the point source approxi-

ination iaPS provides an excellent Lit to the crossing count

function mj, for the target;-Like object described by

eqs. (154)-(1538). However, the asymptotic approximation

mA underestimates mj by nearly an order ofV manitude for

the target-like object.
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It is now assumed that the object is clutter-like,

rather than target-like:

-5 1 T = 5 mrad.0l
instead of the previously assumed values a 0 aT 1 mrad.0

It follows that

T- 795 psec.

replaces eq. (156), The other background and filter

parameter values, eqs, (154), (155), (157), and (158) are

left unchanged. Fig. 19 is a plot of the base ten

logarithms of the corresponding values of mJ(O,TF),

mPS(O.TF), and mA(OTF) for the clutter-like object,

It is seen from Fig. 20 that the asymptotic approxi-

mation mA is effectively equal to mn, providing a much

better approximation than mp, for the clutter-like object.

It has generally been found for a fairly wide range of

background and filter partuneters that

a) tr p, provides an excullent approximation to m.,

and is superior to mA, when the time scale of fluctua-

tion of mix(t) is comparable to that of h(t).

b) mA provides an excellent approximation to in, and

is superior to in when the time scale of fluctuation

of ix (t) is slower than that of h(t).
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VI. Adaptive Throshold Prooessors

A. Introduction

The basic IRST processor under consideration up

to this point is described in Section I.B, and depicted

in Fig. 1. It has been shown in Section V that the

threshold crossing performance of the receiver in Fig.

I is strongly dependent on the threshold function

YO (t). Thus, it is highly desirable that the IRST

processor suppress clutter-induced threshold

crossings by increasing y (t) when in (t) is "cluttor-

like" .

Rather than allow y (t) to tako on an a priori

constant or functional value, it is uecossary to

establish the threshold by some moans that "adapts"

y (t) to the prevailing background conditions.

' A similar type of signal processing p robl em has

been addressed in the radar (1.7, 18) and sonar ( 19 )

Literatures. A candidate adapti.ve threshold oheme

adapted from the earlier work (25) is depicted in

Fig. 20.
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The block with transfer function exp(-j21TfTd)

introduces a delay of Td seconds. The triangular-shaped

block in Fig. 20. denotes an ideal all-pass amplifier of

gain K. It is seen that the delay time Td, gain K, and

transfer functions H0 (f) and H(Z) are all design variables.

Strategies for choosing the design variables in order to

satisfy particular performance requirements or optimization

criteria will not be discussed. The remainder of this

section is devoted to developing a formulation for the

expected number of threshold crossings for IRST receivers

structured as in Fig. 20 under the assumption that the

design variables have all been specified.

Eq. (225) for the crossing rate rj is the principal

result of this section.

B. Analysis

The starting point for the adaptive threshold analysis

is eq. (39):

rh (t) = !II f06(O, )dg (176)

where, from eq. (43):

f G6(0,9) =ffddn f yYyok ° ( ,0+n,0,0) (177)
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Assuming that the processes, y, , yo, and 90, are Jointly

Gaussian (cf. Appendix F for justification), their

joint density can be expressed in terms( of their covariance

matrix (2 1 ) A The matrix A has four rows and four

columns, for a total of sixteen elements. Written in

partitioned form:

I

A m [C__(178)

where the superscript T in (178) denotes the matrix

transpose operation. The sub-matrices C, o and C1 in

eq. (178) are defined as follows:

2 ( t )  C y(t t
2 )(1 y0

c (t) C o(tt) I

C C(t,t) 2 M (189)
Oyy

(i79-(8oy (tt) C o (t~t) (181)

The scalar covariances that comprise the elements of

(179)-(181) are defined by

CAB(tl,t2) E{[A(tl)-n(tl [B(ta)m%(t2)]} (182)

where A and B take on the values Y, Y Y C) d ,as

appropriate. Also,
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inA(t) E(A(t)} (183)

and

0J ) C(t 1t) (184)

It follows from (182) that C. (t,t) Cy (tt) and

Co(t,t) - Cyp (t,t). Thus, the matrices C and C are

symmetric.

The elements of C are obtained directly from

eqs. (B-17),(B-20), and (B-23):

2(t) - e{m (t) h (t)} (185)

(t) -(Mx(t) @ (t1 (186)

Cy(tt) -,o (t) * (t (187)

Expressions for the elements of (180) may be obtained

as direct adaptations of (185)-(187). It follows from

Fig. 20 that

Yo(t) - K(ho(t-Td) X(t)) (188)

where ho(t) is the Fourier inverse of H (f). Taking the
00

expected value of both sides of (188):

in YO(t) - K{h (t-Td) W m. (t)} (18.)

analagous to eq. (B-30). It may also be shown, analagous

to (185)-(187) that:
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2 2
6YO (t) - eK{mx(t) 0 h0 (t-Td)} (190)

2
( t) -eK~m X(t) 40 [F)(t-Td)J (191)

Co ,° (t,t) =dYo (t) dy, (t) (192).

It remains only to formulate similar expressions for the

elements of 21 in order to complete the specification of

the Joint density f yNo° I

The analysis this requires is so similar to Appendix B

that it will only be outlined here.

It may be shown that:

C yoy(t1.t 2 ) - eK.Z dv mx(p)ho(tl-Td-U) h(t2 -P) (193)

Also,

C Oy(tlt 2 ) - 't{C O(tI t2 )} (194)

and

yo (tt{Cy(t 1 1 t 2 )} (195)

cor (t 1 't 2 ) - 't 2 {Cy y(tl't 2 )} (196)
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From (193)-(196):

C (tt)- eK{mX(t) [h 0(t-Td)h(t)]} (197)

C. y(tit) = eK{m X(t) * [r0(t-Td.)h(t)] (198)

C O,(t't) - eK(m,(t) [h 0(t-Td )h(t)] I(199)

C- eKm,(t) [F1(t-Td)r(t (200)

It may readily be seen by inspection of Fig. 22 that

h (t-T )h(t) 0 (201)

for sufficiently large delay times Td . It follows from

(197)-(201) that

C (tt) - C (t,t) - C (t,t) a C (tt) - 0 (202)

for sufficiently large Td. It is assumed that Td is chosen

large enough to validate eq. (202). Since uncorrelated

Gaussian processes are necessarily statistically independeh I )

it follows from eq. (202) that:

f (yV, ,Yv fyk (y,)f (yo o) (203)
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From eqs. (176), (177), and (203)

dnj(t) - Ifd~dq fy (,n)(fdjjfkjff(4,g+q)} (204)

With the change of variable z - n r, eq.(204) may be

written

rh (t) - Eyo0 (iJ(tlyo,9o)} (205)

where, by definition,

dj(tlyo,ko ) f I tz-kojfyt(yo,z)dz (206)

Eyoo fldldn fYoPo(r,n){.} (207)

and f Y is obtained by analogy to eq. (55).

Happily, eq. (206) is seen to be identical to eq. (48).

Thus, the entire analysis of sections IV.B and IV.C,

originally applicable only for deterministic thresholds, is

now found to be directly applicable for stochastic thresholds

as well. From eqs.(70) and (71):

rh (tIYoo) y (l-r2 )1 4(u){(p) + P1 O(P)l (208)

where

-1 
. o<0

p [a,4l-r2)] [chy + ruc, - You ( o) (209)

70



Eq. (205) represents a formal means of calculating the
mean threshold crossing performance of the adaptive
threshold processor depicted in Fig. 20.
However, the evaluation of eq. (205) appears to
present some significant calculational difficulties.
These difficulties are obviated by means of the approxi-
mate method of evaluation pursued in the following

section.

C. Approximations for rh

Following ref. (26), p. 141, thj(tl Yoko ) is given a
truncated Taylor expansion about the values yo my and

rhj(tI yo, )ox A + B + C/2 
(210)

where

A d jtirT, ) Y nhj(tf. 
(211)

B (yo-myo) a oithj(tI.) + oy ) .hi(tl (212)0 
Yo Yo

c )2 y (tI) + (k 2 2o 
o yo j o YO •) (213)

71



The following notation has been employed in eqs. (212) and

(213).

rh dj(tI.) - K (j( tIY0 ) (214)
0o y

t'o YO

2'2
yoy Pj(tI.) B a 0  mj(ty 0 , Io M) (215)

- &Y0

From eqs. (205) and (210)

r,4,t) -Ey 0(A0} + E Ok0{BI + j Y~ {C) (216)

From eqs. (207) and (211)-(213):

E o 0,o{A} r b(ti.) (217)

EyoJOB} - 0 (218)

2 2 2-yuo ({C) a" 'u 3 mj h (t . + cl k j (ti ) (219)

From (216)-(219):

2 2 2 2
h(t) (1+*( a + j(t (220)
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Further development of eq. (220) is simplified by

employing eq. (D-6)-for j, rather than the crossing rate

function of eq. (208). From eqs. (D-4) and (209):

nCL(tlyo,'o) - y (u) + P1  (221)

where

P1  (rhy - o )/q (222)

Consistent with the numerical results obtained thus far, terms

of first and higher order in r have been dropped in writing

eqs. (221) and (222).

From eqs. (220) and (221):

j(t) () [i + O( ( 2 o g ou)L (223)
YO Yoyo Yo YYomy

where

L.- ,(pl) + pl(Pl) (224)

It may be shown from (223) and (224) that:

rhj(t) -hCL(tlmy o I y o ) [1+ YO + (o' j (225)
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where

*U2
u 1m (226)

and

2 c (pl)/2L (227)

-m0

The quantities m YO(t), aYO (t), and a.o (t) in eq. (225) are

calculated by means of eqs. (189), (190), and (191), respectively.

Finally, the expected number of threshold crossings in a time

interval To may be obtained as:

mJ(0,T) - I ij(t)dt (228)
T0

with ih given by eq. (225).

Eq. (225) provides the basis for analyzing a much broader

range of possible adaptive threshold schemes than Fig. 20 might

suggest. For example, straightforward generalizations of eq. (225)

may be applied to the structures of Figs. 22-24. Further numerical.

analysis along the lines of Sec.V for various model backgrounds

and candidate processor structures is indicated, but has not

been pursued thus far.
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Some qualitative discussion of eq. (225) follows in

the next (and concluding) section of this paper.

D. Discussion

The advantages and disadvantages that accrue to the use

of an Adaptive Threshold (AT) processor may be evaluated by

comparing eq. (225) with the corresponding crossing rate function

for Fixed Threshold (FT) processors:

hFT (t) - icL(tlYo,O) (229)

The most important consideration in computing the False Alarm

Rate (FAR) of FT processors is the factor:

()- exp [- (m YYO) 2/2o Y2] (27r)*i (230)

that enters eq. (229) through eq. (221). As shown in the

numerical examples of Section V, constant threshold processors

operating against non-uniform scenes are most susceptible to

false alarms in the immediate neighborhood of the local maxima

2of m (t), i.e., local minima of u (t). It follows from eq. (230)
y

that the false alarm rate is an etremely sensitive function

of m , increasing at a tremendous rate as the mean current

m y(t) approaches y0

The potential advantage of AT schemes may be seen by

comparing eq. (230) with the corresponding factor in eq. (225):

0(u) (2r)-i exp -(m y.mYO)2/2o y2 (231)
75 )2y2
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If the filter H (f) in Fig. 20 can be chosen such that m O(t)

"tracks" the background-induced variations in m (t),

the performance-destroying local minima in u2 (t) can be

eliminated.

It should be noted that the adaptive threshold performance

advantage just described is only realized when the background

scene is non-uniform. The performance of AT processors is

generally inferior to the performance of FT processors when

the background scene is uniform and of known brightness.

In this case:

FARAT ' FARFT(I + FAP) > FARFT (232)

where

FAP E(a /ay)2 E 1 + (a o/a) 2  2 (233)

The threshold variance terms, eq. (233), contribute a False

Alarm Penalty (FAP) whenever an AT processor is used when it

truly isn't needed.

According to eq. (232), the adaptive threshold false

alarm rate (FARAT) is greater (i.e., worse) than the fixed

threshold false alarm rate (FARFT), assuming that the adaptive

threshold gain K in Fig. 2 0 has been adjusted to achieve
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For uniform backgrounds, it is not hard to show that:*

(Oy/y2 - (Af /Af) (236)

yo Y 0

and

(I C, )2  (afolaf) (237)

where Af is the noise bandwidth of H(f), and Af is the noise

bandwidth of Ho(f) (cf. Fig.20 ). It follows from eqs. (233),

(236), and (237), that:

FAP (Affo/Af) {CI + (Afo/Af)2 12 }  (238)

Generally, Af, should be chosen smaller than Af to minimize

the false alarm penalty, eq. (238), and to prevent a too-

rapid threshold response that would tend to suppress target-

induced threshold crossings. On tle other hand, Af° should

be chosen large enough to allow the threshold to accurately

follow most of the structure in the background scene. Clearly,

the choice for Af involves degrading system performance

against uniform backgrounds for the sake of improved performance

against non-un iform backgrounds.
I

Eq. (237) is derived by assuming a rectangular-shaped 11(f),

having an upper cut-off frequency I' and a noise bandwidth

A f f fu
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It appears likely that a more favorable trade-off

could be achieved with the receiver structure shown in

Fig. 22, both from the standpoint of

a) decreasing the false alarm penalty, eq. (233), and

b) improving the background tracking properties of m yo(t).

Eq. (225) and the entire analysis of the preceding section is

easily adapted to the structures of Figs. 22-24. The false

alarm penalty, eq. (233), decreases roughly as (2N)-i for the

detector of Fig. 23, The improvement in uniform background

performance thus obtained for large values of N is gained at

the expense of degraded performance against cluttered scenes,

as compared to detectors with small values of N. The good

background-tracking capability of the structure in Fig. 22

combined with the low false alarm penalty of the structure

of Fig. 23 can be obtained by employing a two-dimensional

detector array with MTme-Dlay and Itegration (TDI) logic.

In order to put this discussion on a concrete quantitative

basis, particular background and target radiance distributions

must be chosen, and the mean current m (t) calculated by meansx
of eq. (A-14). The target detection and clutter rejection

capabilities of a given candidate adaptive threshold processor

can than be analyzed by means of eq. (225). Intercomparisons of

the numerical results thus obtained for a variety of different

processor structures should than allow quantitative conclusions

to be drawn concerning such issues as:
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a) the performance penalty caused by failing to match

the sensor's instantaneous field-of-view to the angular

size of the target.

b) the potential performance advantages of time-delay

and integration (TDI).

c) the best value of N, and the desireability of having

different transfer functions H n(f) for each of the 2N

taps in the tapped delay line structure of Fig. 24.

d) the advantages that may be gained by employing simple

two-dimensional threshold processing, in which the "target

signal" Y(t) and threshold function Y0 (t) are derived

from detectors scanning at different elevations.

e) the possible advantages of including power-law devices,

or other instantaneous non-linear devices in the

threshold-establishing circuitry. It is noted that the

propagation of mean values and variances through non-

linear processing elements may be treated by relatively

straightforward means. (2 9 ) Thus, the calculation of m

and 12 for use in eq. (225) is not difficult, for a
Yo

specified non-.linear relationship between Y0 (t) and X(t).

The only important obstacle to performing analyses of the

kind described above is the lack of high spatial resolution,

radiometric, infrared background imagery.
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DIRECTION OF

BACKGROUND IDETECTOR H

YM1

NOTARGET
DECLARATION

Figure

A basix threshold comparison receiver. The photodetector

in this figure is "idealized", in the sense that it is presumed

to have a perfect all-pass electrical frequency characteristic;

the frequency-depondent part of the detector responsivity is

lumped together with the transfer function of' thle. .rpost-

detector filter to obtain 1(f). A "target declaration' is

made whenever the filtered current XY(t) exceeds the threshold

level Yo( t)
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Figure 2
Part a) of this figure is an illustrative example showing

the mean value mx(t) of the random current X(t), as a function

of time. A small "target-like" (i.e., short-duration) dis-

turbance occurring at time t1 is superposed on a larger ampli-

tude, more slowly varying background. The'correspondifg

mean current m (t) at the output of the post-detector filter
y

(cf. Fig. 1) is shown in part b) of this figure. The slowly-

varying background part of mx (t) is greatly attenuated. By

contrast, the target pulse is attenuated very little, since

its bandwidth is matched to that of the post-detector filter.

A constant threshold of amplitude y: appears as a hori-

zontal line in Fig. 2b). The time t,, where the mean current

m (t) crosses the threshold with a positive slope, is referred

to as a "mean-crossing time" in the text. The time t where

Yo - my(t)I has a local minimum, is called a "saddle point"

in the text.
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ti t2
Figure 3

The crossing rate function ihiis shown as a function of

time, for the example of Figure 2.
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mj(Ot)

tt

ti t2  t 3
Figure 4

The expected number of threshold crossings mj is shown

as a function of time, obtained as the integral of the

crossing rate function rthi depicted in Fig. 3. The small

Jump in m at t is associated with the local maximum in

m (t) at tI shown in Fig. 2. The unity increase in mj at
y1
time t2 also has its corresponding origin in Fig. 2. The

absence of a similar effect at t3 (cf. Fig. 2b) is due to

the definition of nh as a positive-slope crossing rate.
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Figure 5

The average current m Y(t) depicted in this figure yields

nearly the same curve for the expected number of threshold

crossings m i(Q~t) (cf. Fig. 4) as the m y(t) in Fig. 2. It is

assumed only that the peak value and curvature of il (t) at 'time

tand the values of tit t 2 ) and y 0 are the same in Figs. 2 and 5.
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g(t)

Figure 63

A sample function g( t) or tlie random process (I(t) is

depicted as a function of time. vie particular samplo f.unction

chosen hias a zero-crossing at Lime t 0'The time A is chosen

small enough such that the time interval it -t A braekitS

no zeros of g( t) other than tOat at t0



ti1t t3  t4  t

Figure 7
Illustration accompanying eqs. (48)-(50). Functions

YO(t) and m y(t) are an illustrative threshold functioni and

mean current, respectively. When the domain of Lntegration

in eq. (48) is chosen to satisfy constraints (49) and

(50), the expected number of threshold crossings m i is

incremented at time ti, but not at tiMeS, t2 ' t 3 ' or t 4'
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mj(Ot)

ti t2 t3  t4

mj(O,t)
2 -- /
1 -

tl t2  t3  t4

Figure 8

Figures 8a and 8b depict the time development of the

expected number of threshold crossings calculated by means

of equations (51) and (53), respectively, for the threshold

YO(t) and mean current iy (t) shown in Fig. 7.
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-X(1+0 1

-T/2 -T 0 T T/2
Figure 11

An ilLustrativo plot of' tho model background current m( t)

is shown it, at function of timie. The parametric form of' the

model. i ( t) is given by eq. (1.5o). The pitrametters x 01X1 and

v, correspond respectively to a cons tant backgrounld level tile

obj ect/ background poak contrast , and tile ize of a'Ln ''object'

in the sceone. Depending onl whet her r In large or small compared

to the -.Vxton dweLl time , the model1 cu'ron t in~ ( t) is,. represen tia-

tiv I of0 a 'c lut tei'-It ke or a ''targot -iikoc. object , respectivoly.
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HMf

f/t0 f

Figurt, 12
A ropr oeoitat Lvi plot of' the imdl i ti t or t is for

func tion 11(f) ' is shown a~It flitl' t iOl Of t hi ol wt r ica I

f eq'ef~lcyO . The paramnetr ic form ofC 11(f) t., given by otq

(131). The paramoter f i s thek. kcon t~l f 'Okui'v of tihe

baindpass charac terls~tic .The pax'iunet r t is at decaky t i me

for the f ii turs 'imptilse responseIS (O c. t q.10 ,l and is

dlirectly related to the noise bandwidth of the f i I tor by'

eqi. (G-3) The .,wro-ordinatt. 11(o) ot' 11( f) Is deoterminod

by the product of fO and t 0(or'. eqI (G-4), and is gonera I ly

a very small n umber, Tho tunct ion l( C ) h.s nornm i I.d to it

peak value of unity,
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E 0
2-0.3 -0.2 -0.1 0 0.1 0. 2 ,' 0. 3

0.5-

1.0-

1.5
F'igurtA 14

A plot ofin m(t) lb (t) is shown as a function (if timo,

for the model background and f ilter parameters of eqs.(5)

A,(158). This curve is the time derivative of the eurve in

Figure 13.
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x

11.52-

1.44-

1.36-

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
TIME (msec)

Figure 15
A plot of o Y 2(t) is shown as a function of' time, for

the model parameters of eqs. (154)-(158). The val.riance

0 Y 2 (t) of the filtered current Y(t) is defined by eqs. (58),

and evaluated in terms of h(t) and m x (t) b~y means of eq. (74),
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A p I t o f o- t )is Shown for t ho. 11o do it p~r ame t to 1* t'

1,5 (l54I- '.).rial varintl ?l, t of tilt time derivativo

of the f iltorted curent is dtet'inedi bye ) - t and evatiuajt;td

by melia fl k)f iq. (75).
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NORMALIZED THRESHOLD

Figure 18

The base ten logarithm of the expected number of threshold

crossings mj is plotted as a function of the normalized

threshold level, Vor the filtered current statistics of Figs,

13-17. The solid curve is the quantity mj, obtained by inte-

grating eq. (70) numerically. The dotted curve mA is the
asymptotic approximation to mj given by eq. (166). The dashed

curve inpS i -; the point source approximation to m calculated

Jt'rorn eq. (170), The two approximations to mj offer calcula-

tional advantages, in that neither mA nor mpS require numerica:.

integration for their calculation. The basic model background and

filter parameters used in calculating these curves are given by

eqs. (154)-(158), It follows from the discussion in Appendix G

that eqls. (154)-(158) characterize an object matched in

angular extent to the Lnstantaneous field-of-view of the scanning

sensor, i.e., a "target-like" object. As illustrated in this

figure, the point-source approximation m PS provides an excellent

approximation to mJ for target-like objects.
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Figure .19

Similar to Fos g. .18, except hat the qUtl ti eld-f-i ~ nis

As ±ilhist rated in this f'igure the asymp to tic approxinia tiou

II providos an ex.eL lont tpproximittion to in tu' ut t

AA
lio becs



exp (-i2mrfjld YOWt

XM Y(t)

Figure 20

A simple adaptive threshold scheme is illustrated.

The transfer function exp(-2rt' T d) introduces a delay

of T d seconds, ensuring decorrelation of the random

processes Y(t) and Y 0 (t) (cf. Fig. 21). The significance

of the random currents is seen by inspection of Fig. 1.
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A i mplo adal) t. vi t. il'Hhi) 1( 1 0 W el' i ill U ' 1t ed. Ii

do-Lay o omewe n I.sach LII t.rQdUc e a Ite LltIiy' 'Id -womim 'I'le

H4ignfl ctance o ()I thet raji1dom ourron ts X( I: ', Y. t ), ad Y,\

is "won1 by i lHIWQ tio iofl Ig. I. Ph' b leek dl agrnm s-fllmw

heore is Ilotut I y jutst olt' part of1 t i' I Ihlo ltprQ'H U-

receiver sHhewl tn Pig. .
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1/2 >N H0(tM Y0(t)

1 N 2N.

X(t) DELA 5 DELAY 5% DELAY

HM- YMt

Figure 2:3

A candidato adaptive threshold scheme is illustrated that

general izes tho structure of Fig. 22. The thre(-shold-e-stalishinig

approach shown here is roal i.ed in terms of t' taipped delay l.ink-

with 2N taps. Once agatn, tho signi':canco of' X(tI), Y( t ) and

YO (t) to lIows Croin Fig. 1 .
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H10) HN 0) H2N -1 H20~)

1N 2N

X(t) DELAY DELAY DELAY

H~f) Y(t)

Figure 24

The tapped delay line adaptive threshold scheme shown

here generalizes the structure of Fig. 23. The transfer

functions H n(f), n-1,2, ...2N at each of the 2N taps of the

tapped delay line are de , variables, chosen to maximize

the receivers' performance against a particular background

scene, or set of background scenes. There is no a priori

reason why the various delays should be chosen as equal

to one another, other than for fabricational simplicity.

More generally, additional degrees of freedom are incorporated

by allowing these delays to take on distinct values.
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APPENDIX A - Calculating the Average Photocurrent from Background
Data

1. Objective

The objective of this Appendix is to show how the

average value

m x(t) - E{X(t)}

of the random current X(t) (tf.Fig. 1) can be derived

in terms of

a) high spatial resolution radiometric imagery of

the infrared scene, in the optical passband of interest

b) the postulated Modulation Transfer Function (MTF)

of the optical train of the model system,

c) the quantum efficiency and physical dimensions

of the focal plane detectors, and

d) the focal plane scan velocity.

The basic result to be derived is eq. (A-14).

2. The Focal Plane Irradiance

In order to calculate mx(t), it is first necessary to

obtain an expression for the average irradiance mE(x,y) that

%ould be measured in the focal plane of the model system
1

in terms of the average aperture irradiance mEO(xy).

'The aperture irradiance is a random process due to photon
noise. Thus, following the usual convention of random
process theory, the complete ensemble of aperture irradiance
functions is denoted by a capital letter, E(xy). A single
member of the ensemble is denoted by a lower case letter,
e(x,y). The capital letter E is usod to denote both
irradiance and the process of statistical expectation; however,
the context of usage should eliminate any possibility of con-
fusing which of these two meanings i. meant.

108



Thlt, 1111a11 itprture- irradiance mElL,0 is cli rawtoristi, of a

particular iif rared scono ,and may be u-4tiinate'd 1y)van

ot U rad-tometr ix TherMI1 Imaglkilig 8,YStem (118) of

hlighor spatt Th resolutiun than the mode I sys tviii It is aliso

highly desirable that the dwel1. time of' the 'rIS be much

larger than that of tht) model syStem, since the analysis

requires knowledge of' the moan irradianc n est ab 1ti4hod

by averaging over the phlotOn f ILue tUat lonl Stat i St iL'S o f th10

incident. light, 2

ThL' spectral f'.ilter uhoseon f'or use with thlt TIS should

mate ii the combined TIS opt tual t ridn/photode teetor spetC trIA.

response to that ofC tilt mnodol systurm. Thlil, Is necessary

because there is no way to re I. inly ealou to thu irradiancve

ot a sceneU measured In a waveband .' \ Iinl toerm of the

i rradian eO Of' tile Sa1111 S0ent0 men ls red il 'k~ Li tC ' 'fov l t ,411oktrifll

once mn1.( X, ) 11a.4 IPtln SPeC1 i d. th0 "'trazisforined mean

aperture, trradiance' E,,(C r. x, r Ls obtainvd as
(A-1)

2A TIS with a dwelt time mnatolied to the dwell- timelt of, the
modelt system would actual Ly be mevasurinpg a singito member
oJ (x y ) of' the ensemble X, ( x , ) ,rather than the ox'pootced
Yv&llue 1 (.X y) of the, ape~ture() irradianvoe Averag ing out
the phlo 9 n noise by ei.thor increasiung the 'PIS iwe'll tlie
or by perftorming ftrzuxe addi tion decreasos the not.1st ness oL,
tho ri s image, aind improves t he goodness ot' t he TI S
imagory as an estimate of t it1E(.X y)



where

't, denotwi the Fourior transform of til) bracketed
quant tt y

ff ) are spatial frequonc.ies corresponding to the
Y space coordinates x and y, respectively

Employtng vctor notation eq, (A-1) may be written as

The transformed focal plane irradianco (?(.,) 1. obtained

by multiplying o(t)by the Modulation Transt'er Funotion OITF)

that characterizes the imago bIlurrinlg O tefe t Of the odl.0o

systoml' optioal train:

e'(j) - ,T ( ', '( ' , K(A-2)

whore K 4. t constant, Assuming tho convinit:tonal

MTF normal Ivat ion :

MTF ( ) - 1

con.servation of onergy requires that

K T /(2f#)
0 0

where:

. tho transmittanc. of the optios

f the focal lenqth ratio of the optics
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Ftnal ly the mean footMl p lanem irrad iac is oh tatned by

r.tak i. z the i nvu'r s F'our ier1 t ran st f rm ofe( {):

:1 The Tinio-Varying Avrg hoourn

rioe rtosponixu or a' imotov, t la I de tuctor centored t

p081 tion in the foeail plano may be written as:

Rj( ')ill)dr

Where' t ho surrice in teigrtt 1.xcteld's over the aroat AL OV

of the dootector, and d. ts an otement of' surrace

area (cf. Fig. A, 1).

The I'ooaI pl1ane I rrad iatiet. in and thew moan current in

in otq ( A-4I) are ensemble avoiago valuets over the, photon

fl1 u.' LULL ti01 Stattist LO S 0 f thlt I i gh t . F or th liPu rpo so o f'

analysis, tht. electrical. froquenicy oharaotorist ic Of thet-

dtot ctor i. as be* n lumped toge r ner w it h the transtlor I' unc Vton

orC tlihe pos- t.-dot eco tor' fit Or Thus . by doe in 1. I ion 't he

1u1rent I'0spon I i ty R I in o(. (A-4 ) is iiidepond'n t ot'

th 1i' Irequoe y ofC ally t empo ra I. modulIat ioni that maty be imposeid

oni thte irradilance.



A 'P upil tuIo tion'" P. k ) is now defined for tho dtot'octoll

P( : ) - tI A' 'd (A-5 'i

p( A kit,

As-suming that tho dot tootAr lIII- ,t r of symnuittry so

t haL t,

I I

and that. the rospollsivity 1 I un It'uttl fr l th,' dto't or

rur taoc .r t (A-4) hooo-es

l , I I It' t , ) lI ( ,

wher A.,, s i s th v L it i n m t o it 1 1' 1 an . Wit h th, following
hlallgo, of,1 v'rtaLblo

o 6 k1 + om /

m (A-7)
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t" bfjlig the Vol LowitIg two-dif Onsiona I or c ' ati forms

64 
(A-8)

Fl } (A-9)

Eq (A-7) may be voat, with thes aid tit the Fourier coilvol u-
t i ofl t 11 u rP(-,in Its

Moit~)'v' (?Z-, it fol Lows f rom Lit ( A-2) thatL '4) NITF(.) 1 ) K (AI L

t,4oi thjp.-I SP l M F0111-101' tIRtI1. formI 01 t H10

NITF( 4 ) is t.tit, modjuIat ion trnfer CuritIn
Of thO OptLCH,

From (A-10)) and (A-.1)

R V-1 IMTF A -(' 1 -2)

whore. by cdefinit Ion,

MTF (f) P(.t) MTF(f") Ko(A- 1.3

1 1:3



For infinito.,mul "point detectors"' P( ') is effectively unity,

so that

MTF *MTF - K

*for this special case. More generally, the effect of

*having a f inite detector size can be accounted for by

multiplying the MTF of the opticzal system by the transformed

pupil function of the detector, as in Eq, (A-l3).

Finally, scanning effets are included by allowing the

vector ,in Fig. A, 1 to trace the appropriate trajectory.

For a uniform scannin' rato

where t is the time, and yv is the focal plane scan velocity,

ELI, (A-12) then becomes

m x(t) - R1 1 MTF'(t) (t) oxp (j21r -t)d (A-1.41

The current responsivity R I may be written as:

ne/It~ h%) (A-1 5)

wh ar e

h Planck Is constant (joule-sec. /photon)
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Fig. A.1 Focal Plane Geometry

The focal plane irradiance mE( ).is stationary in the

Coordinate system with origin 0. Vector locates the

center of a detector of area A det' For scanning sensors,

is a function of time,
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APPENDIX B. NOISE CURRENT CORRELATION FUNCTIONS

The object ot this Appendix is to verify eqs. (73)-(76)

which are needed to evaluate eq. (70) for the threshold crossing

rate rh (t).

The starting point for this discussion is the linear system

input/output relation between the random processes X(t) and

Y(t) (cf. Figure 1):

Y(t) =IdUi X(p.h(t-p~)(B)

It follows directly from (B-1) that:

IC~~t~2  If dlpdX CXX(X4p) h(t1&X) h(t2 ip) (B-2)

where the covariances C YY and .C-, are defined by

xx

and where

m y(t) E{Y(t)I (B-5)

m XtW E(X(t)} (B.-6)

117



With the definition

Z(t) Yt (B-7)

it follows from eq. (B-3) that

and

From eqs. (B-2), (B-8) and (B-9)

CYZ ti 2 ft dpdX C X(X,p) 3h(t -) a h(t-A) (B-l0)

0ZZ t ,t2) ffdd xx~xp 2. ~tI A t2 ht2P) B1)

Setting t =t -t in eqs. (B-10) and (B.-11), and noting that

2 2 2
Cz (t,t) c (t) -E{Z (t)}1 - M (t) (B-1.2)zz z

it follows that

CYZ(t,t) = tdidX Cxx(,\,P)h(t-X) D t 1(t-) (B-13)

a z(t) I f dpdX CX(A D) %h(t-X) Dth(t-i) (B3-14)
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An expression for C ,x (X,pi) is now required before the analysis

can be carried any further.

Setting t =t,=t in eq. (B-2), and noting that

(tMt) -a2(t) - E{Y 2(t)) 2 (t) (-S

it follows that

2
CI(t) - fdi~dX C x (A,pi)h(t-X)h(t-p~) (B-16)

However, an adaptation of eq. (4.3.13) on p. 115 of ref, (12)

leads to:

2 00 2a (t) - e I dpi h (t-P~) mx (P) (B-17)-
y-

where e is the electronic charge. Consistency between eqs.

(B3-16) and (B3-17) requires that

where 6(.) J., the Dirac delt4 function. Covariance functions

like eq. (B-18) are characteristic of non-stationary white

noise. (20) From eqs. (B-13), (B-14), and (13-18),

CYZ(t,t) =e f dvi h(t-p~) D %h(t-p) m X(I) (B-19)
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a2 (t) -e f di [3h(t-?J) 2 M~(I (B-20)

Noting that

h(t-P.) 3 h(t-V) a h (t-P) (B-21)

it follows from eqs. (B-19) and (B-21) that .
C YZ(t,t) - te 3 { dp h (t-P~) m~ (.GO) (B-22)

From (B-17) and (B-22)

YZt y y y

Defining r(t) as

yzt -- 1tt a ta() (B-24)

it follows from (B-23) and (B-24) that

r~t)- {6y (t/G Zt)) B-25

Taking the expected value of both sides of eq. (B-i) leads

to the result

m (t) I dji m X(p~) h(t-pi) (B-26)
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Taking the time derivative of (B-1):

Y(t) Z(t) -f dp~ X(pi) 3 h(t-V) (B-27)

Taking the expected value of both sides of (B-27):

i.e.,

m~ (t) a a{ I~ duI m (p.) h(t-ip)} (B-28)

From eqs. (B-26) and (B-28)

M z(t) - di y (t) (B-29)

Defining the convolution operator as in eq. (77), eqs. (B-26),

(B-17), (B-20), (B-29), and (B-25) may be written as:

m yt h(t) 0 m X(t) (B-30)

a 2(t) -e h 2(t) 0 m (t) (B-31)
y

a 2(t) - e Ch(t)32 *m~ (t) (B-32)

m Z(t) - di Yt) (B-33)

r(t) y cS (t)/aZ(t)) (B-34)

Equations (B-30)-(B-34) are Identical to eqs. (73)-(76).

121



Appendix C. Relationships Between FAR, PD' and m J

1. The Relationship Between FAR and mj

The complete description of an IRST sensors' performance

under a given set of operational conditions requires the

simultaneous specification of both the False Alarm Rate (FAR) and

the Probability of Detection (PD) for a "target" within the

sensors' field of view. However, both "false alarms" and target

detections are manifested as threshold crossings by the signal

processor. Thus, the object of this Appendix is to relate the

V traditional IRST performance measures, PD and FAR, to the

expected number of threshold crossings mi over prescribed

intervals of time.

It is assumed that the average current mx (t) is known* on

an interval of time ItI < T/2

The expected number of threshold crossings on the interval

Iti < T/2 is defined as mj(O,T). Defining the false alarm rate as

the expected number of threshold crossings per "reference

interval" T ref' the following relationship obtains between

FAR and m J

FAR - (Te f / T) nj(0,T) (C-1)

SThe quantity m x(t) may be specified a priori, or it may be

calculated in terms of the radiance of a particular background

scene (as discussed in Appendix A).
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For example, if FAR is defined as the average number of

false alarms per week, Tre f is set equal to the number of

seconds in one week; if FAR is defined as the average number

of false alarms per system dwell time, then Tre f is set equal

to the dwell time (again expressed in units of seconds).

It is implicitly assumed in eq. (C-l),that the scene under

observation does not include a target, so that each threshold

crossing that occurs gives rise to a "false alarm".

2. The Relationship Between PD and mj: First-Order Approxima-

tion

Although not as straight-forward as eq. (C-1),a relation-

ship between PD and m can also be established.

As prelude to the definition of PD' a "decision interval"

TD is first defined. The interval TD is presumed to bracket

the entire period of time during which the current Y(t) manifests

target-induced fluctuations.

Assuming that a target is present in the scene, the number

of threshold crossings that occur during the interval TD is

defined as the integer random variable J. The discrete

probability density function of J is denoted as f (j).

The probability of detection PD is now defined as the

probability that one or more threshold crossings occur during

the decision interval:

00

PD) E f (J) (C-2)
1J
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(The likelihood of a background-induced crossing

during T D has been neglected). Unfortunately, the problem

of obtaining a formulation for f~ appears to be quite

difficult, (23) The focus of this paper has been on the

development of formulations for the expected number of

threshold crossings

M =E{J} - E Jf (i) (C-3)
J-1

In order to establish a relationship between PDand j

eqs. (0-2) and (C-3) are written as:

In- f (i) + E Jf Ui) (C-5)

Assuming that the probability of two or more threshold

crossings is negligible during the decision interval TD)

eqs. (C-4) and (C-5) can be estimated as:

P f 1(l) (C-6)

124



It follows from (C-6) and (C-7) that

P D (O,Td) (C-8)

According to eq. (C-8), the expected number of threshold

crossings during the decision interval TD provides a good

estimate of the detection probability PD' so long as the

probability of two or more crossings during TD is negligible.

3. The Relationship Between PD and mi: Infinite Contrast

Point Targets

An alternate approach is now taken to the problem of

establishing the relationship between mj and PD' The

discussion that follows is based on the analysis of Section IV,

and will lead to the same result as before - namely, that the

expected number of threshold crossings during the decision

interval provides a reasonable estimate for PD'

It is shown in Section IV that for BLIP sensors and

unresolved targets:

mj 1 - $ (Umin) (C9)

where 0(.) is the Gaussian distribution function

O(u) (21) exp (-v2 /2)dv (C-10)

and

u [Y-m(t max)]a (t ax) (C-li)
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where t max is the time at which the mean current m yt)

assumes its peak value.

Eq. (C-9) is equal to the exceedance probability of

a Gaussian random variable having a mean and variance

of my(tMAX ) and 2 (t max ) respen~tvely. As such,

eq. (C-9) is a relatively straightforward generalization

of the procedure conventionally used to defin6 P
. (24)

Once again, one is encouraged to interpret mj as a

reasonable approximation to PD'

4. The Relationship Botween PD and m ' Proposal for a

Second-Order Approximation

The first-order approximation to PD discussed in Section

C.2 is ,based on the following logic:

a) The methods discussed in Section IV of this paper are

used to obtain a value for mj, the first moment (i.e.,

the average value) of the random variable J.

b) Following eqs. (C-5) and (C-7), mj is used as an

estimate for fV(l).

c) The estimate for fj(l) established in b) is substituted

into the truncated summation for PD' eq. (C-6).

It appears only reasonable that an improved estimate could

be obtained for PD if the variance a of J were known in

addition to the mean mj of J. It will now be shown how knowledge

of a can be used to calculate a second-order approximation for

PD (compare with (C-6)),
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PD ' fj(1) + f (2 ) (C-12)

Unfortunately, the technique described in this section for.

calculating the second-order approximation to pD cannot be im-

plemented until a formulation for is developed analagous to

the formulation for m in Section III. In this connection, it

is noted that Bendat has derived an equation for the crossing

count variance of stationary processes. (2 7 ) His result

(cf. also ref. (23)) is far more complicated than the analagous

eq. (E-8) for mj. Thus a generalization of Bendat's result for

a2 to the case of nonstationary processes and stochastic threshold

functions may prove to b) a difficult problem.

It is now assum,,d that a formulation for g2 can be obtained,

analagous to the development for mj in Section III. Analagous to

eq. (C-3):

2 2 2 (C-13)

Substituting eq. (C-3) into (C-13) leads to the following

expression for a2

aj 2 f (1) 1-f (l + 4fj(2) -fj(1)-fj(2 + Ej

where

f- 2 [f() + 2 f(2 ]Z 3 Jf -[J 2 (C-15)
iLJ-3 jj3 j=3J
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Assuming that the probability of three or more threshold

crossings is negligible during the decision interval,

eqs. (C-3) and (C-14) are approximated as:

m f (1) + 2f (2 ) (C-16)

a f() 11-f (lj + 4f (2) [lf l)-r (2] (C-17)

Calculation of m according to the method of section III, and

an analagous calculation for a , enables eqs. (C-16) and

(C-17) to be solved for approximations to f,(1) and fj( 2),

The second-order approximation to PD is then obtained by

means of eq. (C-12).

If eq. (C-12) is found to yield an appreciably different

result than eq. (C-8), third-order or even higher order

approximations to PD may be required; otherwise, the first-

order eq. (C-8) is then verified as a good approximation for

P1D'2
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APPENDIX D. CRAMER ANDl LEADBETTER'S EQUATION

Cramer and Leadbetter (14) have derived the following

equation for the rate of positive slope zero crossings of

a non-stationary Gaussian random process Y(t) (cf. ref,(14),

eq, (13.3.2)):

tCL(t /a (1-r 2) Ma (O(n) 4 0~(n)) (fl-1)

where

n Ea(~2i1r~ ar (D-2)

and the quantities my, a. a Z and r are defined as in eq. (70).

On p. 288 of ref. (14) the statement is made that the

mean rate at which Y(t) crosses a curve y 0(t) can be obtained

from eq. (D-1) simply by making the substitution

in- (n-Y) (D-3)
y y 0

i n e. (D-'1) .

From eqs. (D-1) -(D-3)

rb (ty Z) (1-r) 00(u'{p + pop ~ D4CL 0 ) pap 1 }(D4

with p 1 defined by eq. (67).

Eq. (D.-4) is similar, but not identical, to eq. (70). The

relationship between eq. (D-4) and eq. (70) will now be explained,

and it will be shown that there is an assumption implicit in

(D-4) that limits the range of its validity.
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Two alternative formulations for the curve crossing rate

are derived in Section III.B.

a) Assuming that both conditions (49) and (50) must

be satisfied before a threshold crossing can be "counted,

by the processor, the resulting expression for the

crossing rate is given by eq. (51).

b) Assuming that only condition (50) need be satisfied

before a threshold crossing can be counted by the processor,

the expression for rj is given by eq. (53).

It is now proposed that a third type of processor might

be constructed, sensitive only to those threshold crossings

for which

;9(t) > ko(t) (D-5)

I.e., it is now assumed that the processor requires the

satisfaction of inequality (49), but not (50). It then

follows from eqs. (48), (D-5), and (52), that:

j(t) - I(co) - l(o) (D-6)

From eqs. (D-6), (63), and (67)-(69):

hj(t) ( -r 2 ) i (u) {k(pl) + pl(Pl)} (D-7)'
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Noting that eqs. (D-4) and (D-7) are identical, it follows

that assumption (D-5) must be implicit in Cramer and

Leadbetter's prescription for calculating the curve crossing

rate.

An asymptotic analysis of eq. (D-4) similar to that of

Section III.D.3 leads to:

mCL(t;yo) C!j( Y-9 ) (D-8)

analagous to eq. (115). It follows from (D-8) that the

mean crossing count mCL is sensitive to all threshold

crossings for which rh > o For example, mCL is incremented

by unity both at time t1 and time t3 in Fig. 7. Thus, the

asymptotic character of mCL reflects the requirement (D-5),

as expected.

1I
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Appendix E -Introduction to Scanning Sensors and
Adaptive Threshold Detectors

1. Scanning Sensors Operating Against Uniform Scenes

a,. Current Statistics

When the sensor of Fig. 1 scans across a uniform

background scene, the output current Y(t) is "statistically

stationary". The meaning of statistical stationarity will

now be discussed, as background to the discussion of non-

uniform scenes and nun-stationary processes that follows

in the next section.

It is assumed that the sensor is scanned and re-scanned

over the same scene, and that there are no changos in

either the scene or the sensor fromn one scan to the next.

The current y(t) during the course of any one particular

scan is called a "1siaple function" of the random process Y(t).

(The process Y(t), in turn, may be thought of as the infinite

ensemble of possible sample functions.) The current sample

function obtained on thle n th scan is designated y(t;n). We

now ;onsider a particular one of these samnple functions, y(t ;l),

depicted in Fig. R.ia.
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The titne vlkriat ions in y( t ;I) havo their origin in the time-

of -arr ivit I V 1uc, twiat ions o f tho indiv iduial photons Inoident on

tho detso tor * Thus , tho fIuLet~Ilattons ini y( t ;1.)i arte Ind p endenit;

(if tho scani vt? bc ity atd tire p ret'met regard 1. ss ofV whet her tile

s4ensor is scazning or motionless.

*If~ 8ucc'ess i y pho tonis arrivedi at un iform , or o t:terwi.so.

prodietab le, t ifl ininitbltq tho arrival t inio of tho ''nxt''

photon would lit prodlotablo in advitncL - in vio lationl ofV

the Hoeisonborg uncertainty princip lo. Thus, even nonlinadlty

eons tant -intens ity sources give rise, to random pho tocurroll t,.,4

This kinud of notae is ofton ca'! Lod ''photon fluctuation

noise'' or 'quan tunt no iso*''. Whetn the q uan ituirn notIs e asso c iatodc

with tho background L ight is the domi nant notIso typo In Ote

sensor , the senlsor, is satcd to lie oporating In t he ''Uaekg round

I~Imi.ited Porl'ornince' (111,111) rog ime.
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The average current at a particular instant of time to may

be defined as the "ensemble average":

1 N
In (to) (n i y(t ;a)) (E-1)

N w n,,I

In order for Y(t) to be a stationary process it is necessary that

m (t), as defined in eq. (E-1),be independent of time. Thus,
y

where the times to and t1 are totally arbitrary (cf., Fig, E.1).

Similarly, the mean-square deviation of Y(t) from its average

value (ie., the "variance" of Y) may be defined at each instant

of time as

a (t) -lim N .y(trn) m(tl 2 (E-2)

a2  M-*CO n
The variance a2  like the mean m Is independent of time for

stationary processes.

Eqs. (E-l) and (E-2) are satisfactory for illustrating the

concept of "ensemble averaging"; however, it is desireable to

have a different means for actually calculating the values of

in and c2 in terms of standard background and sensor parameters.
y y
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It is first necessary to define the average value mx of the

current X(t) (cf. Fig. 1):

mx to 1jeQ B  (E-3)

where

Fe lect ronH
n " quantum efficiency of the detector photon J

Scou lombs'
e -electronic charge ~eetronJ

-. average backgrotind photon flux k

It may be shown that for sonsors operating in the BLIP regime

the mean value and varianceo of Y(t), originally dofined hy

eqs. (E-1) and (E-2), can be calculatod in terms of m X as follows:

my -H(O) inx  (R-4)

y2 y 2emxAf r,

where H(O) is the zero-ordlnate of the transfer fixInc.t ion 11(f)

(cf. Fig. 1), and Af is the noLso bandwidth of 1i( V). For hatndpass

H(f), H(O)-O. 'It fot lows f ron eq. (D-4) that im -0 for thi.s eato.
Since the scene is spatially uniform, the average photon

flux Q is independent of time, It follows from oqs, (E-3)

(E-5) that the mean in and variance o y are also independent

of time, justifying the claim of stationarity for the current

, Y(t).
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Assuming-that the transfer function H(f) is normalized

as follows:

max H(f) = 1 (E-6)
f

the noise bandwidth Af in eq. (E-5) may be calculated from

the equation:

Af- f iH(f)i 2  (E-7)
0

b. Crossing Rates for Constant Threshold Detection

It is now assumed that the signal processor of Fig. 1 is

implemented such that the threshold y. is equal to a constant.

The constant threshold y is depicted on the sample function

plots of Fig. E.l. A brief outline will now be given of a

method for calculating the average number of times that the

random process Y(t) crosses the threshold during a time interval

of duration T seconds. (The relationship between the mean number

of crossings mj and the usual search set performance parameters

PD and FAR is discussed in Appendix C.)

The expected number of crossings mj(OT) may be written in

terms of the crossing rate i as:

m (OT) - rjT (E-8)

According to Rice,(L3 )  may be calculated as

rh ihJo exp (-u /2) (E-,3)
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where

ffj 7 fr 2 Il1(f)I2d (E-1O)

with Af given by (E-7). Also,

u - (yo-my)/q? (E-11)

withmy and uy given by eqs. (E-4) and (E-5),

The quantity u defined by eq. (E-1) may be thought of

as a normalized threshold level.

It follows from eq. (E-9) that the expected number of

threshold crossings drops off rapidly as the threshold level

is increased.

2. Scanning Sensors Operating Against Non-Uniform Scenes

a. Current Statistics

It is now assumed that the sensor of Fig, 1 is scanned a

number of times over the same non-uniform scene, and that there

are no changes in either the scene or the sensor from one scan

to the next. A number of sample functions of the resulting

current process Y(t) are depicted in Fig, r.2.

Once again, the ensemble average mean and variance of

Y(t) are defined by eqs. (E-l) and (E-2), However, its will

now be discussed, Y(t) is now a non-stationary procoss, it.,,
2

my and cy are functions of time.
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It is assumed that the infrared scene encompasses regions

of blue sky and clouds where

a "verage photon flux incident on the detector when

blue sky is being observed,

QC average photon flux incident on the detector when

cloud is being observed.
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The photon flux Q in eq, (E-3) is seen to be a function

of time: Q takes on the value Q when a cloud is in the field of

view, and a different value when the scanning field of view

includes only blue sky. Thus, the process Y(t) is non-stationary

when the scene is non-uniform, since the mean and variance of

Y(t) are seen from eqs. (E-3) - (E-5) to be functions of time.*

The time-varying mean value m (t) is superposed as a
y

dashed curve on each of the sample functions y(t) depicted in

Fig. E.2.

*For the present, it suffices to say that the forms of

eqs. (E-4) and (E-5) indicate that a time-varying m must

2
give rise to time varying my and oy However, it should

be noted that eqs. (E-4) and (E-5) are only strictly valid

for stationary processes, ie., for time-invariant m . Thus,

for a given time-varying m (t), the correct values of m andX y 1
0y cannot generally be calculatod from (E-4) and (E-5).

Generalizations of (E-4) and (E-5) strictly valid for both

stationary and non-stationary processes are given by eqs. (1)

and (7).
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b. Crossing Rates for Constant Threshold Detection

The performance of a constant threshold signal processor

(cf. Fig. 1) against a non-uniform scene can be characterized

in terms of the quantity:*

M m (OT) - I dj(t)dt (E-12)~T
o

where T0 is the time interval Itj : T/2, and

where mj(OT) is the number of times that the current Y(t)

can be expected to cross the threshold level y0 during the

time interval To . Eq. (E-12) is a straightforward

generalization of eq, (E-8), to allow for the possibility of

time-variable threshold crossing rates ihJ,

As long as the time variation of mx(t) is slow compared

to the time variation of the impulse response h(t) of the

post-detector filter (Of.Fig. 1), a good estimate for rtji(t)

can be obtained from eq, (E-9),

*Cf. Appendix C for a discussion of the relationship of

mj(OT) to the usual IRST performance parameters P D and FAR.
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The following steps are then followed in calculating mi(O,T):

(i) The time-varying mean current m (t) is derived from thex

time-varying photon irradiance Q(t) by means of eq. (E-3).

(A detailed derivation of rex(t) in terms of the background

radiance distribution is provided in Appendix A.)

(ii) Estimates of m (t) and ay2(t) are obtained from

eqs, (E-4) and (E-5). (More rigorously, eqs, (6) and

(7) may be used to obtain m yt) and uy2(t).)
(ii) E (
(iii) Eq. (E-l1) is evaluated for u(t),

(iv) Eq. (E-9) is evaluated for ~)

(v) Eq, (E-12) is evaluated for mj(OT).

Numerical examples following the above prescription

typically show that the crossing rate function ilj(t) is extremely

sharply peaked (cf. Fig. E.3). Consequently, appreciable

contributions to mj(OT) only accrue in the near neighborhood

of points such as tp in Fig. E.3. It is shown in Section III.D

that eq. (E-12) may be approximated as:

Inm (0,T) - t (tp) , t 
(P

with thji(tp) obtained from eq, (E-9). The quantity Stp is the

effective interval of time during which m (t) remains in the near
y

neighborhood of its peak value, from the standpoint of crossing

rate calculations, An expression for St is derived in Section

III.D (cf. eq. 16 or eq. 96).
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The implications of eq. (E-13) for system performance

are illustrated with the aid of Fig. E.4.

The large, relatively slowly varying naximum centered

at tp in Fig. E.4 is presumed to have its origin in the
VP

background scene, The narrower, lower amplitude spike

centered at to in Fig. E.4 is presumed to be due to a "target".

It follows from eqs. (E-13) and (E-9) that the likelihood

of a clutter-induced threshold crossing grows rapidly as the threshold

level y in Fig. E.4 is lowered. It follows from the analysis

in Section III.D that a clutter-induced threshold crossing (i,e,,

a "false alarm") becomes a virtual certainty when the threshold

level actually intercepts the mean current m (t). There is
y

apparently no way for the constant threshold processor to

detect the target peak at to without also incurring a false

alarm arising from the clutter peak centered at tP,

1I

~1
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C. Cressing Rates for Ideal (CFAR) Adaptive Threshold Detection

The perfomance of an adaptive threshold processor is

illustrated with the aid of Fig. E.5.

The processor is presumed to have some means for deriving

high-confidence estimates for m y(t) and u .(t),defined as n1i d ,yy y

respectively. When m y(t) is "slowly-varying" the processor

establishes y0 (t) as:

YO(t) u y(t) + KAT ay(t) (E-14)

The threshold is interpolated through periods of "rapidly

varying" m y(t) by means of a smoothing filter, (of,, for

example, the neighborhood of to in Fig. E.5). The adaptive

threshold constant KAT in eq. (E-14) is a design parameter.

From eqs. (E-11) and (E-14)

u(t) - K AT [ ay(t)/Oy(t)] + [M (t)y - my(t)]/ (t) (E-.I5)

When the estimation errors are sufficiently small

y(t) M y t (E-16)

y Y

y (t) m y M

it follows from (E-,15) that

u(t) K AT (E-17)
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Thus, u(t) is rendered time-invariant by the adaptive

threshold processor when there is no rapidly-varying target

contribution to m (t). When there are no targets in the
y

scene, tL mean current in M(t) is assumed to be slowly-
y

varying, and the expected number of crossings during the time

interval T0  may be calculated from eqs. (E-9), (E-12), and

(E-1 7), as:

2Inj(0,T) - I ffJo r ": "0 KAT/2) dt (-8
0

Since both iJo and KAT are time-.nvariant, eq. (E-18) becomes

2
mj(OT) - Jo exp (-KAT/2 ) T (E-19)

Eq. (E-19) has the same form as the crossing rate expression

for uniform scenes, eq. (E-8).

The kind of processor just described has been called a

Constant False Alarm Rate (CFAR) processor, since the threshold

crossing rate is now independent of time, i.e., a crossing is no

more likely to occir when scanning a region of non-uniform back-

ground than when scanning a region of uniform background. E.g.,

with reference to Fig. E.5, the crossing rate is now no greater

at tp than at any other time.
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y~t;1)

/10

y~t;3)

C)

Figure E. 2

Three sample functions of the random current Y(t) are

shown as functions of time, This figure is similar to Fig.

E.l, except the sensor is now presumably scannod over a non-

uniform scene. The Lime-varying ensemble average m Y(t) of

Y(t) is shown as a dashed curve superposed on each of the three

depicted sample functions (solid curves). The ensemble

average m~ is still defined by eq. (B1-); however, the fact

that myis now a function of time implies that Y(t) is now

a nonstationary random process.
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mM(t)

Y 0

I

tp t

Figure E. 3

Part ia) is an illustrative plot of m y(t) Vs. t, where

my is the mean value of the filtered current Y(t) (cf. Fig,

13). Also shown is a constant threshold current yol lying

above the peak value of my. The function m (t) takes on
Y y

its peak value at the time t .

Part b) is a plot of the threshold crossing rate itj)

corresponding to the threshold y and mean current m (t)

of part a). The entire contribution to the crossing rate

integral, eq. (E-12), accrues in the very near neighborhood

of t
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my(t)

Yo

to
Figure E.4

This figure illustrates a critical shortcoming of

constant threshold processing. The slowly varying maxima

centered at tp presumably has its origin in the non-

uniform background scene. The narrower, lower amplitude

spike centered at to is due to a target. The likelihood

of a false alarm (i.e., a clutter-induced threshold crossing)

grows rapidly as the threshold level y is reduced. There

is no way for the constant threshold processor to detect the

target peak at to without also incurring a false alarm

arising from the dlutter peak centered at tp'

A plot of the threshold crossing rate rh (t) corresponding

to this figure would show that the probability of a false

alarm is far greater at time t than *t any other time.
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I

my(t)

t 
i

to
Figure E.5

This figure illustrates an important potential advantage

that accrues to the use of adaptive threshold processing,

The mean current my (t) is the same as for Fig. E.4, with a

clutter peak centered at time t and a lower-amplitude

target spike centered at time to. The adaptive threshold

0y (t) is presumably able to accurately track 
the slowly

varying background signal, but not the more rapidly varying

target signal. Thus, target detection is assured, while

the probability of a false alarm is kept acceptably small.

As contrasted with the situation of Fig. E4, the probability

of a false alarm is now no greater in the neighborhood of

time tp than at any other time.
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APPENDIX F. THE FE-WMIf{ CORRECTION TO tli
.3-

The objective of this Appendix is to estimate the relative

error in th due to the assumption or a strictly Gaussian

probability density function for the current Y(t) (cf. Fig. I):

f (y) uY p Y (F-1)

where (p(.) is the Gaussian density function, in is the mean valueY
2

of Y(t), and o is the variance of Y(t), defined respectively

by eqs, (F-3), (56), and (58).

It will be shown that the assumption of non-stationary

Gaussian statistics for the filtered current Y(t) is totally

Justifiable, for typical sensor parameters and background radiances.

The starting point for this analysis is a truncated

Edgeworthseries expansion ( 1 3 )of f (y), as appropriate fory

describing Poisson shot noise processes Y(t):*

fy (y) tp 'Y-1 '(u) -, (y/0 y 4 (3) ( )(u) (F-2)

Strictly speaking, Y(t) is a conditional Poisson shot noise,

with a wideband thermal level density function. However, it is

well known that such processes may be modeled as constant level

Poisson shot processes when the response time of the detector

is very l1Aig compared with the coherence time of the incident

light. (cf, Ret. (.12))
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where

p''(u) - d (u)/du (F-4)

u * (y-m y)/Cy (F-5)

MY - h(t) m mX(t) (F-6)

2 2

y - h2 (t) W M re(t) (F-7)

y . 2  ha1 w Mxt (F-8)
y!

The quantities e, h(t), and in (t), in eqs. (F-6)-(F-8) are dofined

rollowing oq, (76). Eqs. (F-7) and (F-8), the variance and third

semi-invariant o.t' the nonstationary process Y(t) aire adapted

trom Ref. (L2),

From eqs. (F-2)-(F-4):

i 4(u) (1 + . (F-9)

where the error term L, is givell by

C- (0 6 ) {u(u -3)) (F-LO)
y y *y
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According to eq. (F-10) the relative error increases

as u3 however, it follows from eqs. (F-3) and (F-9) that the

density function f yis of negligible amplitude for large values

of u. It will now be assumed that values of u greater than

eight are of no importance, since

f yCy) - O'exp(-32)} - CI(10 14 ), uu8 (-i

In order to establish a reasonable upper bound for e s,, the

value u-S will be used in eq. (F-10)!

Ey< 500 (X /6c; ) (F-12)

Also,

yY3) < ( XY Max/lay 3min) F-a

where, from eqs. (F-7) and (F-8):

~min 0 e mtnI h (t)dt(F1)

X y -a e' rn x a h (t)dt (F-.15)

From (F-14) and (F-15):

Yax 0ymin -(mx max/m min)(mx minl
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where

F' ~0 31 F 3/2

The number of photoevents per second is now defined as:

Assuming that the scene brightness doesn' t change by more than

a factor of two from one dwell time to another:

(mxmax / nx min ) < 2 (F-19)

From eqs. (F-12), (F-13), (F-16), (F-18), and (F-19):

e <200 vi (F-20)

It is easy to show that for a rectangular-shaped h(t)

of duration T D1 eq. (F-i?) becomes

X 0 D (P-21)

where TD is the system dwell time, From (F-20) and (F'-21).

CY< 200(VTD)& (F-22)
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For a current of 100 namps and a dwell time of 160 psec.

(of. eqs. (154) and (G-14))the number of photoelectrons per

dwell time is given by:

10 - 7 ooU 1. sec - 1

v D M l.6xlO "  coul.electron-  S.6x04sec)

I.e.,

VTD - 108  (F-23)

From eqs. (F-22) and (F-23):

y < 0.02 (F-24)

In general, eq. (F-21) greatly over-estimates the value

of X, and the corresponding upper bound for e is much smaller

than indicated by eq. (F-24). This is because h(t) is the

impulse response of a bandpass filter, taking on negative values

as well as positive values. Thus, there is cancellation in the

numerator of eq. (F-17).

It will now be shown that the relative error in f y(y)

can be used as an estimate for the relative error in th . This

point is most easily illustrated by employing eq. (D-B) for rth.

However, either of the crossing rate expressions (51) or (53)

could be used instead, at the expense of complicating some of

the equations.
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From eqs. (D-6) and (52):

Ij(t) f (z- O ) f, (yoZ) dz (F-25)

For the numerical examples that have been worked thus far

(such as those of Section V), it has been found that the

correlation coefficient of Y(t) and Y(t) is much smaller

than unity:

r(t) << 1 (F-26)

where r(t) is defined by eq. (B-24). Since it has just been

shown that Y(t) has very nearly a Gaussiar density function, anud

since uncorrelated Gaussian variates are statistically independent,

it follows that I
fy" (yoz) - fy(Yo f (Z) (F-27)

From eqs. (F-25) and (F-27):

i(t) - fy) I (Z- o) f (z)dz (F-28)yo

Substituting eq. (F-9) into eq. (F-28), it is neen that c

provides an estimate for the relative error in j, as well

as the relative error in f
y
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APPENDIX G. PARAMETER CHOICE RATIONALE FOR
EQ0UNATI5NS-I) AND

The object of this Appendix is to describe a rationale

for choosing the background and filter parameters x0 , xI , T,

fo 0and t0 (of. eqs. (149) and (150)),

It is common IRST design practice (4 ) to choose the

noise bandwidth of the post-detector filter as follows:

Afa (2,rT)- 1 (G-1)

where

Af - noise bandwidth of the post-detector filter

TT w the time required for the scanning sensor

to sweep across a target.

It is not difficult to show that

TT - TTF/2T (G-2)

where
T w the angular extent of a typical target, at the

desired detection range (radians)

TF  the system "frame time," i.e., the time required

for the sensor to complete a full 360' azimuthal

sweep.
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It may be shown that for the -transfer function 11(f) of

eq. (151), the noise bandwidth is given by:

At (t V2)-l [1 + exp (-2r fot 0) (G-3)

Assuming that

2 2

H1(O) 2 exp (-rrf. to I (G-4)

it follows from eq. (G-3) that

Afl t0 /) G5

Eq. (G-5) is the Justification for referring to to0 as a "noise

bandwidth parameter" of the post-detector filter,

From eqs. (G-1) and (G-5):

Assiuming, for example, that

C1 1 mrad, (G1-7)

TF

*it follows from eq4 (0-2) and (G-6) that

*T -159 lisec. (G-8)

and

to - 225. iisec. (G-9)



Assuming (somewhat arbitrarily) that
I

u(0) - lO"  (G-10)

it follows from eq. (G-4), (G-9), and (G-10) that

fo 6.91 kHz (G-.1O)

Thus, a rationale has been provided for k.oosing the filter I
parameters fo and t0 of eq. (149).

To complete the problem specification, it remains to choose

values for the parameters of eq, (150):

tho time roquired for the sensor to scan

across the object

xU M background brightness parameter (amperes)

x -nobject contrast partmeter (dimonsion less)

Analagous to eq. (G-2):

o T o F /21t ( - f

A object angular extent ( tad ans)
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The form of eq. (150) is general enough to describe botl

"target-like" and "clutter-like" objects. Target-like

objects are defined by:

Co " oT (G-12)
o1 T

Clutter-like objects are defined by:

ao 0 T  (G-13)

It follows from eqs, (G-2), (G-8), and (G-1l) that the

parameter value

- 159 Psec. (G-14)

corresponds to a target-like object a° - ATV

The value for x0 in eq, (150) Is obtained as follows:

x o RI Popt (G-15)

where

X- uniform background current (amperes)

R I  current responsivity (amperes/watt)

Popt - optical power incident on a single detector

(Watts)

The optical power Popt in eq. (G-15) is calculated as:

Popt L1 Al l -16)
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where

L13- in-band background radiance (watts cm-2 sr 1)

A ap area of the telescope aperture (em2)

w- instantaneous field.-of-view (sr)

The current responsivity R I in eq. (G-15) is calculated as:

where

-quantum efficiency (photoelectrons

(incident photon)- I

e - electronic charge (coulombs3 (electron) )

hPlanck's constant (joule sec (photon)

v - optical frequency (see.- I1)

it follows from eq. (0-17) and the numerical values of' e and h

that:

RI O.SriX (G-18)

where

X-average optical wavelength (urn)
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It follows from eq. (G-15), (G-16), and (G-18) that

x0*134 naxmps. (-9

for the following assumed parameter values:

A -M500 cm2

2 -6
W- - 10 sr.

-0.6

X 4.0 wun

and

L 0.14 mw cm-2 sr - (G-20)

The value of background radiance given by eq. (G-20) %as obtained

by integrating Fig. 2. of Ref. (28) over the wav'elength band

3.-5 pm.

The assumed value of pe~ak object contrast, eq. (155) , wits

chosen arbitrarily. It is not difficult to calculate the value

of apparent contrast radiant intensity corresponding to givenI
values of and x1
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